
International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.1

A Qualified Analysis of Synchronous Non-Conflicting Retrieval Line

Amassing Protocols for Fault-Tolerant Mobile Distributed Systems
Yogendra Kumar Katiyar, Research Scholar, Department of ECE, Sunrise University, Alwar, Rajasthan, INDIA.

Email: yogendra.katiyar@gmail.com

Dr. Ram Mohan Singh Bhadoria, Associate Professor, Department of ECE,Sunrise University, Alwar, Rajasthan, INDIA

ABSTRACT

Fault Tolerance Techniques enable setups to implement tasks in the presence of faults. A

repossession-pinpoint (checkpoint) is a native state of an undertaking saved on steady storage.

While dealing with Mobile Distributed setups, we come across some concerns like: mobility, low

bandwidth of cordless passages and lack of steady storage on mobile nodules, disconnections,

restricted battery power and high miscarriage rate of mobile nodules. These concerns make

customary NRL-amassing (Non-conflicting Retrieval Line amassing) techniques designed for

Distributed setups unsuitable for Mobile environments. To stockpile a repossession-pinpoint, a

Nm_Nod (Mobile Nodule) must transfer a large amount of repossession-pinpoint data to its native

Nm_Sp_St over the cordless network. Since the cordless network has low bandwidth and

Nm_Nods have low computation power, all-undertaking NRL-amassing will left-over the scarce

resources of the mobile setup on every repossession-pinpoint. Bottommost-undertaking coherent

NRL-amassing is a preferred approach for mobile distributed setups. In this paper, we discuss

various existing bottommost-undertaking NRL-amassing blueprints for mobile distributed setups.
Keywords: checkpointing; parallel & distributed computing; rollback retrieval; fault-tolerant

systems

1. INTRODUCTION
Parallel computing with clusters of workstations is being used extensively as they are cost-

effective and scalable, and can meet the demands of high-performance computing. Increase in the

number of components in such setups increases the miscarriage probability. It is, thus, necessary

to examine both hardware and software solutions to ensure fault tolerance of such parallel

computers. To provide fault tolerance, it is essential to understand the nature of the faults that

occur in these setups. There are mainly two kinds of faults: enduring and makeshift. Permanent

faults are caused by enduring damage to one or more components and makeshift faults are caused

by changes in environmental conditions. Permanent faults can be rectified by repair or replacement

of components. Makeshift faults remain for a short duration of time and are difficult to detect and

deal with. Hence it is necessary to provide fault tolerance particularly for makeshift failures in

parallel computers. Fault-tolerant techniques enable a setup to implement tasks in the presence of

faults. It is easier and more cost effective to provide software fault tolerance solutions than

hardware solutions to cope with makeshift failures [1, 2].

 Native repossession-pinpoint is the saved state of an undertaking at An undertaking or at

a given instance. Global repossession-pinpoint is a collection of native repossession-pinpoints, one

from each undertaking. A global state is said to be “unfailing” if it contains no conflicting dispatch;

i.e., a dispatch whose receive event is recorded, but its send event is lost. A transit dispatch is a

dispatch whose send event has been recorded by the sending undertaking but whose receive event

has not been recorded by the getting undertaking [1, 7].

 The problem of stockpiling a repossession-pinpoint in a dispatch passing

distributed setup is quite complex because any arbitrary set of repossession-pinpoints cannot be

used for retrieval [9]. This is due to the fact that the set of repossession-pinpoints used for

retrieval must form a unfailing global state.

NRL-amassing is classified into following categories: Asynchronous/Un-coherent NRL-amassing

mailto:yogendra.katiyar@gmail.com

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.2

 Synchronous/Coherent NRL-amassing

 Quasi-Synchronous or Communication-induced NRL-amassing

 Missive Logging based NRL-amassing

The problem of stockpiling a repossession-pinpoint in a dispatch passing distributed setup is quite

complex because any arbitrary set of repossession-pinpoints cannot be used for retrieval. This

is due to the fact that the set of repossession-pinpoints used for retrieval must form a unfailing

global state.

1. ASYNCHRONOUS NRL-AMASSING

Under the asynchronous approach, repossession-pinpoints at each undertaking are taken

independently without any orchestration among the undertakings. Because of absence of

orchestration, there is no guarantee that a set of native repossession-pinpoints taken will be a

unfailing set of repossession-pinpoints. Thus, a retrieval blueprint must search for the most recent

unfailing set of repossession-pinpoints before it can begin retrieval [8], [9].

1.2 SYNCHRONOUS / COHERENT NRL-AMASSING

In coherent or synchronous NRL-amassing, undertakings coordinate their native NRL-amassing

actions such that the set of all recent repossession-pinpoints in the setup is guaranteed to be

unfailing [add reference list……]. In case of a fault, every undertaking restarts from its most recent

enduring/enduring repossession-pinpoint. Hence, this approach simplifies retrieval and it does not

suffer from domino-effect. Furthermore, coherent NRL-amassing requires each undertaking to

maintain only one enduring repossession-pinpoint on steady storage, reducing storage overhead

and eliminating the need for garbage collection. Its main disadvantage is the large latency involved

in output commit [15].

A straightforward approach to coordinate NRL-amassing is to block dispatches while the NRL-

amassing undertaking is executing. A coordinator stockpiles a repossession-pinpoint and

disseminates a requisition dispatch to all undertakings, asking them to stockpile a repossession-

pinpoint. When an undertaking collects a dispatch, it stops its execution, flushes all the

communication passages, stockpiles a conditional-enduring repossession-pinpoint, and sends an

acknowledgement dispatch back to the coordinator. After the coordinator collects

acknowledgement from all undertakings, it disseminates a commit dispatch that completes the two

stage NRL-amassing blueprint. After getting the commit dispatch, each undertaking collects the

old enduring repossession-pinpoint and makes the conditional-enduring repossession-pinpoint

enduring. The undertaking is then free to resume execution and exchange dispatches with other

undertakings. The coherent NRL-amassing blueprints can also be classified into following two

categories: bottommost-undertaking and all undertaking blueprints. In all-undertaking coherent

NRL-amassing blueprints, every undertaking is compelled to stockpile its repossession-pinpoint

in an instigation [7], [8]. In bottommost-undertaking blueprints, bottommost work together ing

undertakings are compelled to stockpile their repossession-pinpoints in an instigation.

 The coherent NRL-amassing blueprints can be classified into two types: stalling and

non-stalling. In stalling blueprints, as mentioned above, some stalling of undertakings takes place

during NRL-amassing [4]. In non-stalling blueprints, no stalling of undertakings is compelled for

NRL-amassing [5].

In a centralized blueprint like Chandy-lamport [7], there is one nodule which always pledges the

repossession-pinpoints and coordinates the participating nodules. The disadvantage of a

centralized blueprint is that all nodules must begin repossession-pinpoints whenever the

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.3

centralized nodule decides to repossession-pinpoint. Nodules can be given autonomy in initiating

repossession-pinpoints by allowing any nodule in the setup to begin repossession-pinpoints.

1.3. MOBILE DISTRIBUTED COMPUTING SETUP

A mobile computing setup consists of many Nm_Nods and relatively fewer Nm_Sp_Sts. The

distributed computation we consider consists of n spatially separated sequential undertakings

denoted by P0, P1, ..., Pn-1, running on fail-stop Nm_Nods or on Nm_Sp_Sts. Each Nm_Nod or

Nm_Sp_St has one undertaking running on it. The static network provides steadfast, sequenced

delivery of dispatches between any two Nm_Sp_Sts, with arbitrary dispatch latency. The cordless

network within a cell ensures FIFO delivery of dispatches between an Nm_Sp_St and a native

Nm_Nod, i.e., there exists a FIFO channel from a Nm_Nod to its native Nm_Sp_St, and another

FIFO channel from the Nm_Sp_St to the Nm_Nod. If a Nm_Nod did not leave the cell, then every

dispatch directed to it from the native Nm_Sp_St would be received in the classification in which

they are directed [2].

To send a dispatch from a Nm_Nod h1 to another Nm_Nod h2, h1 first sends the dispatch to its

native Nm_Sp_St over the cordless network. This Nm_Sp_St then forwards the dispatch to the

native Nm_Sp_St of h2 which forwards it to h2 over its native cordless network. Since the location

of a Nm_Nod within the network is neither fixed nor universally known to the network, because,

a Nm_Nod switches cells frequently. The native Nm_Sp_St of h1 needs to first determine the

Nm_Sp_St that currently serves h2. This is essentially the problem that has been tackled through a

variety of routing blueprints at the network layer. Hence, the cost incurred for routing and

delivering a dispatch to a Nm_Nod, varies with the specific routing blueprint being used. Here, we

have assumed that any dispatch destined for a Nm_Nod incurs a fixed search cost [2].

1.4 NRL-AMASSING CONCERNS IN MOBILE DISTRIBUTED COMPUTING SETUPS

The existence of mobile nodules in a distributed setup introduces new concerns that need proper

handling while designing an NRL-amassing blueprint for such setups. These concerns are

mobility, disconnections, finite power source, vulnerable to physical damage, lack of steady

storage etc. [2, 19, 20]. The location of a Nm_Nod within the network, as represented by its current

native Nm_Sp_St, changes with time. NRL-amassing blueprints that send control dispatches to

Nm_Nods, will need to first locate the Nm_Nod within the network, and thereby incur a search

overhead [2]. Due to vulnerability of mobile computers to catastrophic failures, disk storage of a

Nm_Nod is not acceptably steady for storing dispatch logs or native repossession-pinpoints. NRL-

amassing blueprints must therefore, rely on an alternative steady repository for a Mob-Nod’s

native repossession-pinpoint [2]. Disconnections of one or more Nm_Nods should not prevent

recording the global state of an application executing on Nm_Nods. It should be noted that

cessation of a Nm_Nod is a voluntary undertaking, and recurrent disconnections of Nm_Nods is

an expected feature of the mobile computing environments [2]. The battery at the Nm_Nod has

restricted life. To save energy, the Nm_Nod can power down individual components during

periods of low activity [2]. This strategy is referred to as the doze mode undertaking. A Nm_Nod

in doze mode is awakened on getting a dispatch. Therefore, energy conservation and low

bandwidth constraints require the NRL-amassing blueprints to abate the number of orchestration

dispatches and the number of repossession-pinpoints.

2. SOME BOTTOMMOST-IMPLEMENTATION COHERENT NRL-AMASSING

BLUEPRINTS FOR MOBILE DISTRIBUTED SETUPS

 2.1 GUOHONG CAO AND MUKESH SINGHAL BLUEPRINT [5]Cao and Singhal

achieved non-intrusiveness in the bottommost-undertaking blueprint by introducing the concept

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.4

of mutable repossession-pinpoints. In their blueprint, initiator, say Pin, sends the repossession-

pinpoint requisition to any undertaking, say Pj, only if Pin collects m from Pj in the current CI. Pj

stockpiles its conditional-enduring repossession-pinpoint if Pj has directed m to Pin in the current

CI; otherwise, Pj concludes that the repossession-pinpoint requisition is a useless one. Similarly,

when Pj stockpiles its conditional-enduring repossession-pinpoint, it propagates the repossession-

pinpoint requisition to other undertakings. This undertaking is continued till the repossession-

pinpoint requisition reaches all the undertakings on which the initiator transitively depends and a

NRL-amassing tree is formed. During NRL-amassing, if Pi collects m from Pj such that Pj has

taken some repossession-pinpoint in the current instigation before sending m, Pi may be forced to

stockpile a repossession-pinpoint, called mutable repossession-pinpoint. If Pi is not in the

bottommost set, its mutable repossession-pinpoint is useless and is discarded on commit. The huge

data structure MR [4] is also attached with the repossession-pinpoint requisitions to condense the

number of useless repossession-pinpoint requisitions. The rejoinder from each undertaking is

directed directly to initiator.

2.2 KUMAR AND KUMAR BLUEPRINT [14]
They recommended a blueprint which is based on keeping track of direct dependencies of

undertakings. Initiator Nm_Sp_St collects the direct dependency vectors of all undertakings, works

out the conditional-enduring bottommost set (bottommost set or its subset), and sends the

repossession-pinpoint requisition along with the conditional-enduring bottommost set to all

Nm_Sp_Sts. This step is taken to condense the time to gather the coherent repossession-pinpoint.

It will also condense the number of useless repossession-pinpoints and the stalling of the

undertakings. Suppose, during the execution of the NRL-amassing blueprint, Pi stockpiles its

repossession-pinpoint and sends m to Pj. Pj collects m such that it has not taken its repossession-

pinpoint for the current instigation and it does not know whether it will get the repossession-

pinpoint requisition. If Pj stockpiles its repossession-pinpoint after undertaking ing m, m will

become conflicting. To evade such conflicting dispatches, they propose the following technique.

If Pj has directed at bottommost one dispatch to An undertaking, say Pk and Pk is in the

conditional-enduring bottommost set, there is a good probability that Pj will get the repossession-

pinpoint requisition. Therefore, Pj stockpiles its induced repossession-pinpoint before undertaking

ing m. An induced repossession-pinpoint is like the mutable repossession-pinpoint [18]. In this

case, most probably, Pj will get the repossession-pinpoint requisition and its induced repossession-

pinpoint will be converted into enduring one. There is a less probability that Pj will not get the

repossession-pinpoint requisition and its induced repossession-pinpoint will be discarded.

Alternatively, if there is not a good probability that Pj will get the repossession-pinpoint

requisition, Pj buffers m till it stockpiles its repossession-pinpoint or collects the commit dispatch.

They have tried to minimize the number of useless repossession-pinpoints and stalling of the

undertaking by using the probabilistic approach and buffering selective dispatches at the receiver

end. Exact dependencies among undertakings are maintained. It abolishes the useless repossession-

pinpoint requisitions and reduces the number of duplicate repossession-pinpoint requisitions.

2.3 SILVA AND SILVA BLUEPRINT [15]

The authors recommended all undertaking coherent NRL-amassing blueprint for distributed

setups. The non-intrusiveness during NRL-amassing is achieved by attaching monotonically

expanding repossession-pinpoint number along with computational dispatch. When An

undertaking collects a computational dispatch with the high repossession-pinpoint number, it

stockpiles its repossession-pinpoint before undertaking ing the dispatch. When it gathers the

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.5

repossession-pinpoint requisition from the initiator, it ignores the same. If each undertaking of the

distributed program is endorsed to begin the repossession-pinpoint undertaking, the network may

be flooded with control dispatches and undertaking might left-over their time making unnecessary

repossession-pinpoints. To evade this, Silva and Silva give the key to begin repossession-pinpoint

blueprint to one undertaking. The repossession-pinpoint event is triggered periodically by a native

timer blueprint. When this timer expires, the initiator undertaking the repossession-pinpoint state

of undertaking running in the machine and dictate all the others to stockpile repossession-pinpoint

by sending a disseminate dispatch. The interval between adjacent repossession-pinpoints is called

repossession-pinpoint interval.

2.4 KOO-TOUEG’S BLUEPRINT [10]
They recommended a bottommost undertaking stalling NRL-amassing blueprint for

distributed setups. The blueprint consists of two phases. During the first stage, the repossession-

pinpoint initiator identifies all undertakings with which it has communicated since the last

repossession-pinpoint and sends them a requisition. Upon getting the requisition, each

undertaking in turn identifies all undertaking it has communicated with since the last

repossession-pinpoint and sends them a requisition, and so on, until no more undertakings can be

identified. During the second stage, all undertaking identified in the first stage stockpile a

repossession-pinpoint. The result is an unfailing repossession-pinpoint that involves only the

participating undertakings. In this blueprint, after an undertaking stockpile a repossession-

pinpoint, it cannot send any dispatch until the second stage terminates successfully, although

getting dispatches after the repossession-pinpoint is permissible.

2.5 COA AND SINGHAL STALLING BLUEPRINT [4]
They presented a bottommost undertaking NRL-amassing blueprint in which, the dependency

information is recorded by a Boolean vector. This blueprint is a two-stage blueprint and hoards

two kinds of repossession-pinpoint on the steady storage. In the first stage, the initiator sends a

requisition to all undertakings to send their dependency vector. On getting the requisition, each

undertaking sends its dependency vector. Having received all the dependency vectors, the initiator

constructs an N*N dependency matrix with one row per undertaking, represented by the

dependency vector of the undertaking, based on the dependency matrix, the initiator can locally

calculate all the undertaking on which the initiator transitively depend. After the initiator finds all

the undertaking that need to stockpile their repossession-pinpoints, it adds them to the set Sforced

and directs them to stockpile repossession-pinpoints. Any undertaking getting a repossession-

pinpoint requisition stockpiles the repossession-pinpoint and sends a reply. The undertaking must

be blocked after getting the dependency vectors requisition and resumes its computation after

getting a repossession-pinpoint requisition.

2.6 PRAKASH-SINGHAL BLUEPRINT [16]
It was the first blueprint to combine these two approaches i.e., bottommost undertaking and non-

impeding. More specifically, it dictates only a bottommost number of undertakings to stockpile

repossession-pinpoints and does not obstruct the underlying mensuration during NRL-amassing.

Prakash Singhal blueprint [16] dictates only part of undertakings to stockpile repossession-

pinpoints, the snpsht_class_no of some undertakings may be out-of-date, and may not be able to

evade discrepancies. It attempts to solve this delinquent by having each undertaking maintains an

array to save the snpsht_class_no, where chkpt_seq_noi[i] has been the expected snpsht_class_no

of Pi. Note that Pi’s chkpt_seq_noj[i] may be divergent from Pj 's chkpt_seq_noj [i] if there is no

communication between Pi and Pj for several repossession-pinpoint intervals. By using

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.6

snpsht_class_no and the founder identification number, they claim that their non-impeding

blueprint can evade discrepancies and curtail the number of repossession-pinpoints during NRL-

amassing.

2.7. P. KUMAR’S HYBRID BLUEPRINT [13]

In bottommost-undertaking coherent NRL-amassing, some undertakings may not repossession-

pinpoint for several repossession-pinpoint initiations. In the case of a retrieval after a fault, such

undertakings may rollback to far earlier repossession-pinpoint ed state and thus may cause greater

defeat of computation. In all-undertaking coherent NRL-amassing, the retrieval line is advanced

for all undertakings but the NRL-amassing overhead may be exceedingly high. To optimize both

matrices, the NRL-amassing overhead and the defeat of computation on retrieval, P.Kumar

recommended a hybrid NRL-amassing blueprint, wherein an all-undertaking coherent

repossession-pinpoint is taken after the execution of bottommost-undertaking coherent NRL-

amassing blueprint for a fixed number of times. Thus, the Mobile nodules with low activity or in

doze mode undertaking may not be disturbed in the case of bottommost-undertaking NRL-

amassing and the retrieval line is advanced for each undertaking after an all-undertaking

repossession-pinpoint. Additionally, he tried to abate the information attached onto each

computation dispatch. For bottommost-undertaking NRL-amassing, he designed a stalling

blueprint, where no useless repossession-pinpoints are taken and a determination has been made

to optimize the stalling of undertakings. He recommended to delay selective dispatches at the

receiver end. By doing so, undertakings are endorsed to implement their normal computation, send

dispatches, and partially receive them during their stalling period. The recommended bottommost-

undertaking stalling blueprint dictates zero useless repossession-pinpoints at the cost of very

inconsequential stalling.

2.8 Kumar & Khunteta [17] Blueprint

They have recommended a bottommost undertaking coherent NRL-amassing blueprint for mobile

distributed setup, where no useless repossession-pinpoints are taken and a determination is made

to abate the stalling of undertakings. The number of undertakings that stockpile repossession-

pinpoints is abated to evade awakening of Nm_Nods in doze mode of undertaking and thrashing

of Nm_Nods with NRL-amassing activity. Further, it hoards restricted battery life of Nm_Nods

and low bandwidth of cordless passages. We have used the concept of delaying selective

dispatches at the receiver end only during the NRL-amassing period. By using this technique, only

selective undertakings are blocked for a short duration and undertakings are endorsed to do their

normal reckonings and send dispatches in the stalling period. They captured the transitive

dependencies during the normal execution. The Z-dependencies are well taken care of in this

blueprint. They also evaded collecting dependency vectors of all undertakings to compute the

bottommost set. Thus, the recommended blueprint is simultaneously able to condense the useless

repossession-pinpoints to zero and tries to optimize the stalling of undertakings at very less cost

of maintaining exact dependencies among undertakings and attaching repossession-pinpoint

classification numbers and dependency vectors onto normal computation dispatches.

2.9 Garg and Kumar Blueprint [18]

They have recommended a nonstalling coherent NRL-amassing blueprint for mobile distributed

setups, where only bottommost number of undertakings stockpiles enduring repossession-

pinpoints. They have reduced the dispatch complexity in comparison to Cao-Singhal blueprint [5],

while keeping the number of useless repossession-pinpoints unchanged. The recommended

blueprint is designed to impose low memory and computation overheads on Nm_Nods and low

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.7

communication overheads on cordless passages. A Nm_Nod can remain disconnected for an

arbitrary period without affecting NRL-amassing activity. They address the concerns like: failures

during NRL-amassing, disconnections, maintaining exact dependencies among undertakings, and

contemporaneous initiations. They also attempt to abate the defeat of NRL-amassing

determination if some undertaking backfires to stockpile its repossession-pinpoint in the first stage

but it will increase the orchestration overhead.

 CONCLUSION

The existence of mobile nodules in a distributed setup introduces new concerns that need proper

handling while designing a NRL-amassing blueprint for such setups. These concerns are mobility,

disconnections, finite power source, vulnerable to physical damage, lack of steady storage, etc.

The new concerns make customary NRL-amassing techniques unsuitable to repossession-

pinpoint mobile distributed setups. A good NRL-amassing blueprint for mobile distributed setups

should have low memory overheads on Nm_Nods, low overheads on cordless passages and should

evade awakening of a Nm_Nod in doze mode undertaking. The cessation of a Nm_Nod should not

lead to infinite wait state. The blueprint should be non-intrusive and should dictate bottommost

number of undertakings to stockpile their native repossession-pinpoints .

 Bottommost-undertaking coherent NRL-amassing is a suitable approach to introduce

fault tolerance in mobile distributed setups transparently. This approach is domino-free, requires

at most two repossession-pinpoints of an undertaking on steady storage, and dictates only a

bottommost number of undertakings to repossession-pinpoint. It may require stalling of

undertakings, extra orchestration dispatches, attaching of some information along with

computation dispatches, or stockpiling some useless repossession-pinpoints.

In this paper we have given introductory concepts related to NRL-amassing in mobile distributed

setups. We also gave an analysis of various bottommost-undertaking NRL-amassing blueprints

especially designed for mobile distributed setups.

REFERENCES

[1] Singhal, M, N G Shivratri, “Advanced concepts in Operating Systems, Tata Mc Graw Hill,

1994.

 [2] Acharya A., “Structuring Distributed Algorithms and Services for networks with Mobile

Hosts”, Ph.D. Thesis, Rutgers University, 1995.

[3] Cao G. and Singhal M., “On coordinated checkpointing in Distributed Systems”, IEEE

Transactions on Parallel and Distributed Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.

[4] Cao G. and Singhal M., “On the Impossibility of Min-process Non-blocking Checkpointing

and an Efficient Checkpointing Algorithm for Mobile Computing Systems,” Proceedings

of International Conference on Parallel Processing, pp. 37-44, August 1998.

[5] Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing Approach for

Mobile Computing systems,” IEEE Transaction On Parallel and Distributed Systems, vol.

12, no. 2, pp. 157-172, February 2001.

[6] Cao G. and Singhal M., “Checkpointing with Mutable Checkpoints”, Theoretical

Computer Science, 290(2003), pp. 1127-1148.

[7] Chandy K. M. and Lamport L., “Distributed Snapshots: Determining Global State of

Distributed Systems,” ACM Transaction on Computing Systems, vol. 3, No. 1, pp. 63-75,

February 1985.

International Conference on Digital Innovation in India
Venue: Sant Shri Prannath Parnami Teachers Training College, Padampur

26th June 2022

International Advance Journal of Engineering Science & Management Sponsored.8

[8] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A Survey of Rollback-Recovery

Protocols in Message-Passing Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-

408, 2002.

[9] Kalaiselvi, S., Rajaraman, V., “A Survey of Checkpointing Algorithms for Parallel and

Distributed Systems”, Sadhna, Vol. 25, Part 5, October 2000, pp. 489-510.

[10] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for Distributed Systems,”

IEEE Trans. on Software Engineering, vol. 13, no. 1, pp. 23-31, January 1987.

 [11] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A Non-Intrusive Minimum

Process Synchronous Checkpointing Protocol for Mobile Distributed Systems”

Proceedings of IEEE ICPWC-2005, January 2005.

[12] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing Algorithm for Mobile Computing

Environment”, LNCS, No. 2775, pp 65-74, 2003.

[13] Parveen Kumar, “A Low-Cost Hybrid Coordinated Checkpointing Protocol for Mobile

Distributed Systems”, Mobile Information Systems [An International Journal from IOS

Press, Netherlands] pp 13-32, Vol. 4, No. 1, 2007.

[14]. Lalit Kumar, Parveen Kumar “A Synchronous Checkpointing Protocol for Mobile

Distributed Systems: A Probabilistic Approach”, International Journal of Information and

Computer Security [An International Journal from Inderscience Publishers, USA], pp 298-

314, Vol. 3 No. 1, 2007.

[15]. Silva L, Silva J 1992 Global checkpointing for distributed programs. Proc. IEEE 11th

Symp. On Reliable Distributed Syst. pp 155-162.

[16] R. Prakash and M. Singhal. “Low-Cost Checkpointing and Failure Recovery in Mobile

Computing Systems”. IEEE Trans. on Parallel and Distributed System, pages 1035-1048,

Oct. 1996.

[17] Praveen Kumar, Ajay Khunteta, “A Minimum-Process Coordinated Checkpointing Protocol

for Mobile Distributed System” International Journal of Computer Science issues, Vol. 7,

Issue 3, 2010

[18] Rachit Garg, Praveen Kumar, “A Nonblocking Coordinated Checkpointing Algorithm for

Mobile Computing Systems”, International Journal of Computer Science issues, Vol. 7,

Issue 3, 2010

[19] Deverpalli Raghu, Parveen Kumar,” A Crossbreed Orchestrated Temporary Snapshot based

Amalgamated coordinated Consistent Recovery Line Accumulation Protocol for Mobile

Distributed Systems”, International Journal of Electrical Engineering and Technology” Vol.

11, Issue 9, Nov 2020, pp.225-238.

[20] Praveen Choudhary, Parveen Kumar,” Effectual Minimum-Process Consistent Recovery Line

Etiquette for Mobile Ad hoc Networks”, International Journal of Electrical Engineering and

Technology” Vol. 11, Issue 7, Nov 2020, pp.31-37.

