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Abstract 
 This paper focuses on the convergence of certain Ishikawa type iterations to fixed points 

of maps satisfying the contractive conditions defined in the earlier chapter. This paper embibes 

some fixed point theorems for contractive conditions using Ishikawa iterations established by 

Albert K. Kalinde and B.E. Rhoades, Kalishankar Tiwary and S.C. Debnath and Rhoades. 

In 1992, Albert K. Kalinde and B.E. Rhoades successfully derived sufficient conditions for the 

coefficients of Ishikawa iteration process. They proved, if the Ishikawa iterates of a continuous 

self-map G (of the unit interval) converge, then they converge to a fixed print of G. 

They derived these following results: 

Theorem 1 

Let G be a continuous self map of L  [0,1] so that the Ishikawa iterates {un} converge, 

1 If lim infn > 0 and lim inf n=0, then {un} converges to a fixed point of G. 

2 If A is regular and lim inf n = 1, then {un} converges to a fixed point of G2. 

Proof 

(1) Let lim un = z. Then,  a subsequence {ni} of {n} such that 
i

limni= 0. Therefore yni = (1-

ni) + ni G uni 

 yni – uni = ni (Guni – uni). 

Thus lim |yni – uni |  2 ni, which implies that limi yni = z. 

 Because uni+1 – uni = ni (Gyni-Uni) and 

 lim inf n | Gz – z |  0, Therefore, Gz= z. 

(2)  lim Sup n  1 = lim inf n and lim n = 1. 

  yn  Gz. By the continuity of G, 

 Gyn  G2z. Since un  z and A is regular, therefore,  

 G2z = z. 

By the example given below we can prove that theorem (1) is not applicable in an arbitrary Banach 

space with conditions lim inf n < 0 and 0< lim inf n < 1. Define u(t) as a continuous function on 

L (closed unit interval) with conditions given below and E is a space of u(t), 

Conditions : u(0)=0,  u(1) = 1, 0  u(t)  1, u0 = u0(t)=1, f(u)[t]=t u(t). 

 Using, un+1 = (1 - n) un + n Gyn, yn = (1-n) un+nGun, n  0. 

 Choosing n = 2/3, n = ½, we get 
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 For each t, {un} converges but {un} has no fixed points. 

Theorem 2 

Let G be a continuous self map of L (closed unit interval) and {n}, {n} satisfy the conditions. 

i) n  0, n  1,   n 

ii) lim n = 0 

iii) n =  

 Then un+1 = (1 - n) un + n G [(1-n) un + n Gun] 

 converges to a fixed point of G. 

Proof 

First of all we shall prove that {un} satisfying three conditions which follow its definition, 

converges. 
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Definition of un 

 un+1 = (1-n)un+n G[(1-n)un+n Gun], for n  0 .....................   (1) 

Conditions : 

 {n}, {n} satisfy the conditions 

1 n  0, n  1,   n 

2 lim n = 0 

3 n n =  and u0  L 

Equation (1) can be modified in the form, 

un+1 = (1-n) un + n Gyn, where yn = (1-n) un + n Gun, n  0 ....    (2) 

Let us consider the existence of integer k such that Gxk = xk. By equation (2), we get 

 yk = uk which gives uk+1 = uk. Therefore by induction, 

 un = uk,   n  k. Hence the sequence converges to uk. 

Now suppose that Gxn  xn,   n. Because {un} is contained in L. Therefore, the sequence {un} 

has at least one limit point in L. Let, lim
n

 inf un = 1 and lim
n

 sup un = 2. Then 1  2. Taking 1 

< 2, we shall prove that 1  G1 and G2  2. These two inequalities are true if 1 = 0 and 2 = 

1. When 2<1, proof is achieved by contradiction. If 2 < G2, by the continuity of G at 2, there 

exists >0 such that  u < Gu,   u  (2 , 2 + ). Choosing <2-1 and using condition  (2), we 

have  lim sup
n

 un =  2 = lim sup
n

 yn. By the definition of lim Sup, there exists a,  > 0 and n0 such 

that  

 un < 2 +  and yn < 2 + ,   n  n0 ....................     (3) 

 The subsequence {
knu } of {un} converging to 2 

 n0 can be chosen in such way that 
knu  (2-, 2+),   k  k0 and nk0  n0. Taking, A = {n : n 

 n0 and un  (2 - , 2 + )} ..............      (4) 

we get A is non empty. 

Now we shall prove A is equivalent to a number N. Let us consider any element of A be n. Then 

un < Gun giving un  yn. By (3), we arrive at the conclusion that y  (2 - , 2 + ). Now we have 

un  yn < Gyn and from (2), we get un+1 – un = n (Gyn – un)  0 which implies un  un+1. Because 

n+1>n  n0, (3) gives 2- < un  un+1 < 2 +  and un+1 (2 - , 2 + ). This shows that n+1 

belongs to (4) and by induction A is equivalent to N. Hence un  (2 - , 2 + );   n  n0.  Because 

  satisfies the condition <2-1 or 1 < 2 - , Then 1 is not a limit point of {un}, which is a 

contradiction. Therefore, G2  2. Similarly, for 1 > o and G1 < 1, we get 1  G1. 

Now we shall prove that each u  (1, 2) is a fixed point of G. If possible, let 
*
u  (1, 2) so that 

*
u  G

*
u . Because G is cont at 

*
u , therefore,   > 0 such that u < Gu,   u(

*
u -, 

*
u +) where 

 is taken so that 0<< ½ (
*
u -1). As 2 is a limit point of the sequence {un}, then  n0 such that 

*
u <un0. Because L is compact and G is cont on L, resulting G is uniformly cont. on L. Thus 

condition (2) implies that n0 can be chosen such that,  

 un - /2 < yn < un + /2 ………..      (5) and 

 Gun - /2 < Gyn < Gun + /2,   n  n0. 

Since 
*
u  < un0, then 

*
u  < un < 

*
u  +  or 

*
u  +   un0. 

If 
*
u  < un0 < 

*
u  + , then uno < Guno and resulting uno  yno.  

Which implies 
*
u  <yno < 

*
u  +  or 

*
u  +   yno. 
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Now assuming 
*
u  < yno < 

*
u  + . Then yno < Gyno  

which  gives uno  yno < Gyno. Therefore, uno+1 – uno = no (Gyno -uno)  0 or 
*
u < uno < uno+1. 

 If we take 
*
u  +   yno, we get 

 Guno - /2  yno - /2  
*
u +-/2 = 

*
u  + /2 on account of yno  Guno. 

 By (3.2.5), we have Gyno > Guno - /2  
*
u  + /2 

Which additionally to the condition 
*
u  < uno forces us to conclude uno+1 > 

*
u . 

Eq. (5) gives two cases for the condition 
*
u  +   uno 

Case 1 : When yno  (
*
u  + /2, 

*
u  + ) 

In this case, uno < Gyno which implies  

 uno+1 = (I-no) uno+ no Gyno – uno  no (yno – uno) 

By Eq (5) and 
*u  +   uno, we get 

 uno+1  uno - no /2  
*u  +  - /2 = 

*u  + /2 > 
*u  

Case 2 : When yno  
*u  + . Now we faces two possibilities depending upon Gyno > uno or Guno < 

uno. 

If Gyno > uno, then 
*u  +   uno + yno and application of (5) gives us. uno+1 = uno - no uno + ano + 

Gyno 

   uno - no uno + ano + Guno - no /2 

   uno + no (Guno - uno) - /2  uno - /2 

   
*u  +  - /2 = 

*u  + /2 > 
*u  

If Guno < uno then 
*u  +   yno  uno. This implies uno+1  

*u  +  > 
*u  which further gives us yno  

Gyno. Also, if Gyno  yno, we have Gyno<yno < uno which ultimately gives uno+1 – uno = no (Gyno – 

uno)  0 or uno  uno+1. Because 
*u  and  are positive real numbers. Therefore, we can find a natural 

number n1 satisfying uno  uno+1 > 
*u  - n1 

Now applying this process to uno+1, uno+2, uno+3 .............. etc. we can prove the existence of a natural 

number k0 satisfying the conditions 
*u -k0>, and un > 

*u  - k,   n  n0. If it is not so, then for 

any natural number k, we have either 
*u  - k  1 or  a number nk  n0 such that 

*u -k  unk. For 

k=1, 
*u -  1 which is a contradiction of the choice  to satisfy 2 < 

*u -1 and then the condition 

 < 
*u -1. 

Thus, the second case bring us with 
*u  unk+k  k  0, k. Because 

*u  is finite, therefore {k} 

is a bounded sequence, which is a contraction. Therefore there exists at least one k0 such that un > 

*u -k0 > 1,   n  n0, showing that 1 is not a limit point of {un} and contradicting 1 = lim infn 

un. 
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If we take 
*
u   (1, 2) in such a way that G

*
u  < 

*
u , we arrive at the conclusion that there exist a 

k1N such that 
*u +k1 such that 2 and un < 

*u  - k1, nn0. This implies 2 is not a limit point of 

{un} and contradicts the fact 2 = lim Supn un. Therefore each point of (1, 2) is a fixed point of 

G. This argument along with the continuity of G proves the impossibility of 1 < G1 and G2 < 

2 and hence 1 and 2 are not fixed points of G. 

Now, by induction method, we shall prove that the sequence {un} converges to 1 and 2. For this, 

fix  < ½ (2 - 1). Because G is uniformly cont. and 0 < ½ (2-1), therefore for any >0,  an  

()>0 satisfying the condition | Gx – Gy | < ,  x, y  L and |x – y| <  ()........   

        (6) 

Taking () = min{(),} > 0. By the second condition of the theorem along with the properties 

of lim inf, for ()>0,  n1N such that, 

 1 - () < un and 1 - () < yn, n  n1 ...................     (7) 

 and un-() < yn < un + () 

Now define,  

 A ={nN; nn1 and un, yn  (1-(), 1 + ()} ..............   (8) 

Because 1 = lim inf un and from second condition of the theorem, it is very clear that A is non 

empty. Let n be an arbitary element of A. We need to show that n+1  A.  

By the definition of A and Eq. (6) along with 1 is a fixed point of G, it follows, 

 |Gyn-un|  |Gyn-1| + |1-un| <  + () < 2 

Hence we have, |un+1 – un|  |Gyn – un|  2. Because Gun  un and un (1-(), 1 + ()), 

therefore, 1 - () < un < 1 and Eq. (7) gives us 1-() < un+1. Ultimately, by this above 

argument, 1 - () < un+1  un + 2 <1 +2 with 1 + 2 < 2 on account of 2 < 2-1. Hence 1-

() < un+1 < 1+as 1  un+1 < 1 + 2 is impossible. Thus, un+1 (1 - (), 1 + ()). Now for 

yn+1, by Eq. (7), 1 -  () < yn+1. 

Now we are left with, to prove yn+1 < 1 + (). By Eq. (7), we get un+1 - () < yn+1 < un+1 + () 

as n+1>n>n1. As un+1 < 1, we get 1-()<yn+1 < 1+() or yn+1 (1 - (), 1 + ()). This 

implies n+1  A defined by (8) and A is equivalent to N. Hence |un-1|<()  , n n1. 

Because this inequality is valid for every small  > 0 and {un} converges to 1. 

By the same procedure, {un} also converges to 2. But the uniqueness of the limit point of the 

sequence is contracted by 1  2. 

  1 = 2 and {un} converges. 

Let a0 = 1 = 2, then Ga0 = a0 

Hence the completion of proof 

A weak derivation for general Banach spaces given by Rhoades is following. 

Theorem 3 : Let K be a non empty closed convex subset of a Banach space. G be a cont. self map 

of K whose set of fixed points is non empty i.e. F(G). 

Let {n} and {n} are real sequences satisfying the following conditions. 

1 0  n, n  1,  n 

2 lim n = 0 

3 lim sup n > 0. 

If {un+1} converges, then it converges to a fixed point of G, where un+1 is defined as, 

un+1 = (1-n) un + n G [(1–n) un + n Gun], n  0 

Proof 

Let a0 be a limit point of {un}. Because K is closed and convex, G(K) K. 
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Therefore, a0K. By Eq. (2), we get ||yn-un|| = n || Gun-un||. As G is cont, the sequence {Gun – un} 

also converges. Second condition of the theorem results, into lim || yn – un||=lim n, lim||Gun – un|| 

= 0 and therefore lim yn=a0, lim Gyn = Ga0. Now, we shall prove that lim Gyn=a0. 

By Equation (2), ||un+1 – un|| = n || Gyn-un||. 

Now, we get 

 lim sup ||un+1 – un||=lim sup n lim sup || Gyn-un|| = 0 

Now condition (III) implies that lim ||Gyn-un||=0 

which further implies that a0 is a fixed point of G. 
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