International Advance Journal of Engineering, Science and Management (IAJESM)

SOME FIXED POINT THEOREMS FOR ISHIKAWA

ITERATIONS
Reena Yadav, Scholar, Department of Mathematics, Sunrise University, Sunrise University, Alwar (Raj.), India Dr. Uma Shankar, Associate Professor, Department of Mathematics, Sunrise University, Alwar,(Raj.), India

Abstract
This paper focuses on the convergence of certain Ishikawa type iterations to fixed points of maps satisfying the contractive conditions defined in the earlier chapter. This paper embibes some fixed point theorems for contractive conditions using Ishikawa iterations established by Albert K. Kalinde and B.E. Rhoades, Kalishankar Tiwary and S.C. Debnath and Rhoades.
In 1992, Albert K. Kalinde and B.E. Rhoades successfully derived sufficient conditions for the coefficients of Ishikawa iteration process. They proved, if the Ishikawa iterates of a continuous self-map G (of the unit interval) converge, then they converge to a fixed print of G.
They derived these following results:

Theorem 1

Let G be a continuous self map of $L \equiv[0,1]$ so that the Ishikawa iterates $\left\{u_{n}\right\}$ converge,
1 If $\lim \inf \alpha_{n}>0$ and $\lim \inf \beta_{n}=0$, then $\left\{u_{n}\right\}$ converges to a fixed point of G.
2 If A is regular and $\lim \inf \beta_{n}=1$, then $\left\{u_{n}\right\}$ converges to a fixed point of G^{2}.
Proof
(1) Let $\lim u_{n}=z$. Then, \exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that $\lim _{i} \beta_{n i}=0$. Therefore $y_{n i}=(1-$
$\left.\beta_{n i}\right)+\beta_{n i} G u_{n i}$
$y_{n i}-u_{n i}=\beta_{n i}\left(G u_{n i}-u_{n i}\right)$.
Thus $\lim \left|y_{n i}-u_{n i}\right| \leq 2 \beta_{n \mathrm{n}}$, which implies that $\lim _{i} y_{n i}=z$.
Because $u_{n i+1}-u_{n i}=\alpha_{n i}\left(G_{y_{n i}}-U_{n i}\right)$ and
$\lim \inf \alpha_{\mathrm{n}}|\mathrm{Gz}-\mathrm{z}| \leq 0$, Therefore, $\mathrm{Gz}=\mathrm{z}$.
(2) $\quad \because \lim \operatorname{Sup} \beta_{\mathrm{n}} \leq 1=\lim \inf \beta_{\mathrm{n}}$ and $\lim \beta_{\mathrm{n}}=1$.
$\therefore \mathrm{y}_{\mathrm{n}} \rightarrow \mathrm{Gz}$. By the continuity of G,
$\mathrm{Gy}_{\mathrm{n}} \rightarrow \mathrm{G}^{2} \mathrm{z}$. Since $\mathrm{u}_{\mathrm{n}} \rightarrow \mathrm{z}$ and A is regular, therefore,
$\mathrm{G}^{2} \mathrm{z}=\mathrm{z}$.
By the example given below we can prove that theorem (1) is not applicable in an arbitrary Banach space with conditions $\lim \inf \alpha_{n}<0$ and $0<\lim \inf \beta_{n}<1$. Define $u(t)$ as a continuous function on L (closed unit interval) with conditions given below and E is a space of $u(t)$,
Conditions : $\mathrm{u}(0)=0, \mathrm{u}(1)=1,0 \leq \mathrm{u}(\mathrm{t}) \leq 1, \mathrm{u}_{0}=\mathrm{u}_{0}(\mathrm{t})=1, \mathrm{f}(\mathrm{u})[\mathrm{t}]=\mathrm{t} \mathrm{u}(\mathrm{t})$.
Using, $u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} G y_{n}, y_{n}=\left(1-\beta_{n}\right) u_{n}+\beta_{n} G u_{n}, n \geq 0$.
Choosing $\alpha_{n}=2 / 3, \beta_{\mathrm{n}}=1 / 2$, we get
$u_{n}=\frac{u_{0}\left(1+t+t^{2}\right)^{n}}{3^{n}}, y_{n}=\frac{u_{0}(1+t)\left(1+t+t^{2}\right)^{n}}{2.3^{n}}$
\therefore For each $\mathrm{t},\left\{\mathrm{u}_{\mathrm{n}}\right\}$ converges but $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ has no fixed points.

Theorem 2

Let G be a continuous self map of L (closed unit interval) and $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy the conditions.
i) $\quad \alpha_{\mathrm{n}} \geq 0, \beta_{\mathrm{n}} \leq 1, \forall \mathrm{n}$
ii) $\quad \lim \beta_{n}=0$
iii) $\quad \Sigma \alpha_{n}=\infty$

Then $u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} G\left[\left(1-\beta_{n}\right) u_{n}+\beta_{n} G u_{n}\right]$
converges to a fixed point of G.

Proof

First of all we shall prove that $\left\{u_{n}\right\}$ satisfying three conditions which follow its definition, converges.

Definition of $\mathbf{u}_{\mathbf{n}}$

$u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} G\left[\left(1-\beta_{n}\right) u_{n}+\beta_{n} G u_{n}\right]$, for $n \geq 0$
Conditions:
$\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ satisfy the conditions
$1 \quad \alpha_{\mathrm{n}} \geq 0, \beta_{\mathrm{n}} \leq 1, \forall \mathrm{n}$
$2 \quad \lim \beta_{\mathrm{n}}=0$
$3 \quad \Sigma \alpha_{\mathrm{n}} \beta_{\mathrm{n}}=\infty$ and $\mathrm{u}_{0} \in \mathrm{~L}$
Equation (1) can be modified in the form,
$u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} G y_{n}$, where $y_{n}=\left(1-\beta_{n}\right) u_{n}+\beta_{n} G u_{n}, n \geq 0 \ldots$.
Let us consider the existence of integer k such that $G x_{k}=x_{k}$. By equation (2), we get
$y_{k}=u_{k}$ which gives $u_{k+1}=u_{k}$. Therefore by induction,
$\mathrm{u}_{\mathrm{n}}=\mathrm{u}_{\mathrm{k}}, \forall \mathrm{n} \geq \mathrm{k}$. Hence the sequence converges to u_{k}.
Now suppose that $G x_{n} \neq x_{n}, \forall n$. Because $\left\{u_{n}\right\}$ is contained in L. Therefore, the sequence $\left\{u_{n}\right\}$ has at least one limit point in L. Let, $\lim _{n} \inf u_{n}=\xi_{1}$ and $\lim _{n} \sup u_{n}=\xi_{2}$. Then $\xi_{1} \leq \xi_{2}$. Taking ξ_{1} $<\xi_{2}$, we shall prove that $\xi_{1} \leq \mathrm{G} \xi_{1}$ and $\mathrm{G} \xi_{2} \leq \xi_{2}$. These two inequalities are true if $\xi_{1}=0$ and $\xi_{2}=$ 1. When $\xi_{2}<1$, proof is achieved by contradiction. If $\xi_{2}<\mathrm{G} \xi_{2}$, by the continuity of G at ξ_{2}, there exists $\delta>0$ such that $\mathrm{u}<\mathrm{Gu}, \forall \mathrm{u} \in\left(\xi_{2} \delta, \xi_{2}+\delta\right)$. Choosing $\delta<\xi_{2}-\xi_{1}$ and using condition (2), we have $\lim \sup u_{n}=\xi_{2}=\lim \sup y_{n}$. By the definition of lim Sup, there exists $a, \delta>0$ and n_{0} such that

$$
\begin{equation*}
\mathrm{u}_{\mathrm{n}}<\xi_{2}+\delta \text { and } \mathrm{y}_{\mathrm{n}}<\xi_{2}+\delta, \forall \mathrm{n} \geq \mathrm{n}_{0} . \tag{3}
\end{equation*}
$$

\because The subsequence $\left\{u_{n_{k}}\right\}$ of $\left\{u_{n}\right\}$ converging to ξ_{2}
$\therefore \mathrm{n}_{0}$ can be chosen in such way that $u_{n_{k}} \in\left(\xi_{2}-\delta, \xi_{2}+\delta\right), \forall \mathrm{k} \geq \mathrm{k}_{0}$ and $\mathrm{n}_{\mathrm{k} 0} \geq \mathrm{n}_{0}$. Taking, $\mathrm{A}=\{\mathrm{n}: \mathrm{n}$ $\geq n_{0}$ and $\left.u_{n} \in\left(\xi_{2}-\delta, \xi_{2}+\delta\right)\right\}$
we get A is non empty.
Now we shall prove A is equivalent to a number N. Let us consider any element of A be n. Then $u_{n}<\mathrm{Gu}_{\mathrm{n}}$ giving $\mathrm{u}_{\mathrm{n}} \leq \mathrm{y}_{\mathrm{n}}$. By (3), we arrive at the conclusion that $\mathrm{y} \in\left(\xi_{2}-\delta, \xi_{2}+\delta\right)$. Now we have $u_{n} \leq y_{n}<G y_{n}$ and from (2), we get $u_{n+1}-u_{n}=\alpha_{n}\left(G y_{n}-u_{n}\right) \geq 0$ which implies $u_{n} \leq u_{n+1}$. Because $\mathrm{n}+1>\mathrm{n} \geq \mathrm{n}_{0}$, (3) gives $\xi_{2}-\delta<\mathrm{u}_{\mathrm{n}} \leq \mathrm{u}_{\mathrm{n}+1}<\xi_{2}+\delta$ and $\mathrm{u}_{\mathrm{n}+1} \in\left(\xi_{2}-\delta, \xi_{2}+\delta\right.$). This shows that $\mathrm{n}+1$ belongs to (4) and by induction A is equivalent to N. Hence $u_{n} \in\left(\xi_{2}-\delta, \xi_{2}+\delta\right) ; \forall n \geq n_{0}$. Because δ satisfies the condition $\delta<\xi_{2}-\xi_{1}$ or $\xi_{1}<\xi_{2}-\delta$, Then ξ_{1} is not a limit point of $\left\{\mathbf{u}_{n}\right\}$, which is a contradiction. Therefore, $\mathrm{G} \xi_{2} \leq \xi_{2}$. Similarly, for $\xi_{1}>0$ and $\mathrm{G} \xi_{1}<\xi_{1}$, we get $\xi_{1} \leq \mathrm{G} \xi_{1}$.
Now we shall prove that each $\mathrm{u} \in\left(\xi_{1}, \xi_{2}\right)$ is a fixed point of G. If possible, let $\stackrel{*}{u} \in\left(\xi_{1}, \xi_{2}\right)$ so that $\stackrel{*}{u} \in \mathrm{G} \stackrel{*}{u}$. Because G is cont at $\stackrel{*}{u}$, therefore, $\exists \delta>0$ such that $\mathrm{u}<\mathrm{Gu}, \forall \mathrm{u} \in\left({ }_{u}^{u}-\delta, \stackrel{*}{u}+\delta\right)$ where δ is taken so that $0<\delta<1 / 2\left(\stackrel{*}{u}-\xi_{1}\right)$. As ξ_{2} is a limit point of the sequence $\left\{u_{n}\right\}$, then $\exists n_{0}$ such that $\stackrel{*}{u}<\mathrm{u}_{\mathrm{n} 0}$. Because L is compact and G is cont on L , resulting G is uniformly cont. on L . Thus condition (2) implies that n_{0} can be chosen such that,

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{n}}-\delta / 2<\mathrm{y}_{\mathrm{n}}<\mathrm{u}_{\mathrm{n}}+\delta / 2 \ldots \ldots \ldots \ldots \\
& G u_{\mathrm{n}}-\delta / 2<\mathrm{Gy}_{\mathrm{n}}<\mathrm{Gu}_{\mathrm{n}}+\delta / 2, \forall \mathrm{n} \geq \mathrm{n}_{0} .
\end{aligned}
$$

Since $\stackrel{*}{u}<\mathrm{u}_{\mathrm{n} 0}$, then $\stackrel{*}{u}<\mathrm{u}_{\mathrm{n}}<\stackrel{*}{u}+\delta$ or $\stackrel{*}{u}+\delta \leq \mathrm{u}_{\mathrm{n} 0}$.
If $\tilde{u}^{*}<\mathrm{u}_{\mathrm{n} 0}<\stackrel{*}{u}^{+}+\delta$, then $\mathrm{u}_{\mathrm{no}}<\mathrm{Gu}_{\mathrm{no}}$ and resulting $\mathrm{u}_{\mathrm{no}} \leq \mathrm{y}_{\mathrm{no}}$.
Which implies $\stackrel{*}{u}^{*} \mathrm{y}_{\mathrm{no}}<\stackrel{*}{u}^{+}+\delta$ or ${ }_{u}^{*}+\delta \leq \mathrm{y}_{\mathrm{no}}$.

International Advance Journal of Engineering, Science and Management (IAJESM) ISSN -2393-8048, July-December 2021, Submitted in October 2021, iajesm2014@gmail.com

Now assuming $\stackrel{*}{u}<\mathrm{y}_{\mathrm{no}}<\stackrel{*}{u}+\delta$. Then $\mathrm{y}_{\mathrm{no}}<\mathrm{Gy}_{\mathrm{no}}$
which gives $\mathrm{u}_{\mathrm{no}} \leq \mathrm{y}_{\mathrm{no}}<G y_{\mathrm{no}}$. Therefore, $\mathrm{u}_{\mathrm{no}+1}-\mathrm{u}_{\mathrm{no}}=\alpha_{\mathrm{no}}\left(\mathrm{Gy}_{\mathrm{no}}-\mathrm{u}_{\mathrm{no}}\right) \geq 0$ or $\stackrel{*}{u}<\mathrm{u}_{\mathrm{no}}<\mathrm{u}_{\mathrm{no}+1}$.
If we take $u^{*}+\delta \leq \mathrm{y}_{\mathrm{no}}$, we get
$\mathrm{Gu}_{\mathrm{no}}-\delta / 2 \geq \mathrm{y}_{\mathrm{no}}-\delta / 2 \geq \stackrel{*}{u}+\delta-\delta / 2=\stackrel{*}{u}+\delta / 2$ on account of $\mathrm{yno}_{\mathrm{no}} \leq \mathrm{Gu}_{\mathrm{no}}$.
By (3.2.5), we have $\mathrm{Gy}_{\mathrm{no}}>\mathrm{Gu}_{\mathrm{no}}-\delta / 2 \geq u^{*}+\delta / 2$
Which additionally to the condition $\stackrel{*}{u}^{<} \mathrm{u}_{\mathrm{no}}$ forces us to conclude $\mathrm{u}_{\mathrm{no+1}}>\stackrel{*}{u}$.
Eq. (5) gives two cases for the condition $\stackrel{*}{u}+\delta \leq \mathrm{u}_{\mathrm{no}}$
Case 1 : When $\mathrm{y}_{\mathrm{no}} \in\left(\stackrel{*}{u}^{*}+\delta / 2, \stackrel{*}{u}^{*}+\delta\right)$
In this case, $\mathrm{u}_{\mathrm{no}}<\mathrm{Gy}_{\mathrm{no}}$ which implies

$$
\mathrm{u}_{\mathrm{no}+1}=\left(\mathrm{I}-\alpha_{\mathrm{no}}\right) \mathrm{u}_{\mathrm{no}}+\alpha_{\mathrm{no}} \mathrm{~Gy}_{\mathrm{no}}-\mathrm{u}_{\mathrm{no}} \geq \alpha_{\mathrm{no}}\left(\mathrm{y}_{\mathrm{no}}-\mathrm{u}_{\mathrm{no}}\right)
$$

By Eq (5) and $\stackrel{*}{u}+\delta \leq \mathrm{u}_{\mathrm{no}}$, we get

$$
\mathrm{u}_{\mathrm{no+1}} \geq \mathrm{u}_{\mathrm{no}}-\alpha_{\mathrm{no}} \delta / 2 \geq \stackrel{*}{u}+\delta-\delta / 2=\stackrel{*}{u}+\delta / 2>\stackrel{*}{u}
$$

Case 2 : When $\mathrm{y}_{\mathrm{no}} \geq \stackrel{*}{u}+\delta$. Now we faces two possibilities depending upon $\mathrm{Gy}_{\mathrm{no}}>\mathrm{u}_{\mathrm{no}}$ or $\mathrm{Gu}_{\mathrm{no}}<$ u_{no}.

If $\mathrm{Gy}_{\mathrm{no}}>\mathrm{u}_{\mathrm{no}}$, then $\stackrel{*}{u}+\delta \leq \mathrm{u}_{\mathrm{no}}+\mathrm{y}_{\mathrm{no}}$ and application of (5) gives us. $\mathrm{u}_{\mathrm{no}+1}=\mathrm{u}_{\mathrm{no}}-\alpha_{\mathrm{no}} \mathrm{u}_{\mathrm{no}}+\mathrm{a}_{\mathrm{no}}+$ Gyno

$$
\begin{aligned}
& \geq u_{\mathrm{no}}-\alpha_{\mathrm{no}} \mathrm{u}_{\mathrm{no}}+\mathrm{a}_{\mathrm{no}}+\mathrm{Gu}_{\mathrm{no}}-\alpha_{\mathrm{no}} \delta / 2 \\
& \geq \mathrm{u}_{\mathrm{no}}+\alpha_{\mathrm{no}}\left(\mathrm{Gu}_{\mathrm{no}}-\mathrm{u}_{\mathrm{no}}\right)-\delta / 2 \geq \mathrm{u}_{\mathrm{no}}-\delta / 2 \\
& \geq \stackrel{*}{u}+\delta-\delta / 2=\stackrel{*}{u}+\delta / 2>\stackrel{*}{u}
\end{aligned}
$$

If $\mathrm{Gu}_{\mathrm{no}}<\mathrm{u}_{\mathrm{no}}$ then $\stackrel{*}{u}+\delta \leq \mathrm{y}_{\mathrm{no}} \leq \mathrm{u}_{\mathrm{no}}$. This implies $\mathrm{u}_{\mathrm{no}+1} \geq \stackrel{*}{u}+\delta>\stackrel{*}{u}$ which further gives $u s \mathrm{y}_{\mathrm{no}} \leq$ $\mathrm{Gy}_{\mathrm{no}}$. Also, if $\mathrm{Gy}_{\mathrm{no}} \leq \mathrm{y}_{\mathrm{no}}$, we have $\mathrm{Gy}_{\mathrm{no}}<\mathrm{y}_{\mathrm{no}}<\mathrm{u}_{\mathrm{no}}$ which ultimately gives $\mathrm{u}_{\mathrm{no}+1}-\mathrm{u}_{\mathrm{no}}=\alpha_{\mathrm{no}}\left(\mathrm{Gy}_{\mathrm{no}}-\right.$ $\left.\mathrm{u}_{\mathrm{no}}\right) \leq 0$ or $\mathrm{u}_{\mathrm{no}} \geq \mathrm{u}_{\mathrm{no}+1}$. Because \ddot{u}^{*} and δ are positive real numbers. Therefore, we can find a natural number n_{1} satisfying $\mathrm{u}_{\mathrm{no}} \geq \mathrm{u}_{\mathrm{no+1}}>\stackrel{*}{u}-\mathrm{n}_{1} \delta$
Now applying this process to $\mathrm{u}_{\mathrm{no+}+1}, \mathrm{u}_{\mathrm{no}+2}, \mathrm{u}_{\mathrm{nO}+3}$ \qquad etc. we can prove the existence of a natural number k_{0} satisfying the conditions $\stackrel{*}{u}-\mathrm{k}_{0} \delta>\xi$, and $\mathrm{u}_{\mathrm{n}}>\stackrel{*}{u}-\mathrm{k} \delta, \forall \mathrm{n} \geq \mathrm{n}_{0}$. If it is not so, then for any natural number k , we have either $\stackrel{*}{u}-\mathrm{k} \delta \leq \xi_{1}$ or \exists a number $\mathrm{n}_{\mathrm{k}} \geq \mathrm{n}_{0}$ such that $\stackrel{*}{u}-\mathrm{k} \delta \geq \mathrm{u}_{\mathrm{nk}}$. For $\mathrm{k}=1, \stackrel{*}{u}-\delta \leq \xi_{1}$ which is a contradiction of the choice δ to satisfy $2 \delta<\stackrel{*}{u}-\xi_{1}$ and then the condition $\delta<\stackrel{*}{u}-\xi_{1}$.
Thus, the second case bring us with $\stackrel{*}{u} \geq \mathrm{u}_{\mathrm{nk}}+\mathrm{k} \delta \geq \mathrm{k} \delta \geq 0, \forall \mathrm{k}$. Because ${ }^{*}$ is finite, therefore $\{\mathrm{k} \delta\}$ is a bounded sequence, which is a contraction. Therefore there exists at least one k_{0} such that u_{n} > $\stackrel{*}{u}-\mathrm{k}_{0} \delta>\xi_{1}, \forall \mathrm{n} \geq \mathrm{n}_{0}$, showing that ξ_{1} is not a limit point of $\left\{\mathrm{u}_{\mathrm{n}}\right\}$ and contradicting $\xi_{1}=\lim \inf _{\mathrm{n}}$ u_{n}.

If we take $u_{*} \in\left(\xi_{1}, \xi_{2}\right)$ in such a way that $\mathrm{G} \underset{*}{u}<\underset{*}{u}$, we arrive at the conclusion that there exist a
$\mathrm{k}_{1} \in \mathrm{~N}$ such that $\stackrel{*}{u}+\mathrm{k}_{1}$ such that ξ_{2} and $\mathrm{u}_{\mathrm{n}}<\stackrel{*}{u}-\mathrm{k}_{1} \delta, \forall \mathrm{n} \geq \mathrm{n}_{0}$. This implies ξ_{2} is not a limit point of $\left\{u_{n}\right\}$ and contradicts the fact $\xi_{2}=\lim \operatorname{Sup}_{\mathrm{n}} \mathrm{u}_{\mathrm{n}}$. Therefore each point of $\left(\xi_{1}, \xi_{2}\right)$ is a fixed point of G. This argument along with the continuity of G proves the impossibility of $\xi_{1}<\mathrm{G} \xi_{1}$ and $\mathrm{G} \xi_{2}<$ ξ_{2} and hence ξ_{1} and ξ_{2} are not fixed points of G.
Now, by induction method, we shall prove that the sequence $\left\{u_{n}\right\}$ converges to ξ_{1} and ξ_{2}. For this, fix $\varepsilon<1 / 2\left(\xi_{2}-\xi_{1}\right)$. Because G is uniformly cont. and $0<1 / 2\left(\xi_{2}-\xi_{1}\right)$, therefore for any $\in>0, \exists$ an α $(\epsilon)>0$ satisfying the condition $|\mathrm{Gx}-\mathrm{Gy}|<\epsilon, \forall \mathrm{x}, \mathrm{y} \in \mathrm{L}$ and $|\mathrm{x}-\mathrm{y}|<\alpha(\epsilon) \ldots . . .$.

Taking $\delta(\epsilon)=\min \{\alpha(\epsilon), \varepsilon\}>0$. By the second condition of the theorem along with the properties of lim inf, for $\alpha(\in)>0, \exists \mathrm{n}_{1} \in \mathrm{~N}$ such that,

$$
\begin{align*}
& \xi_{1}-\delta(\epsilon)<\mathrm{u}_{\mathrm{n}} \text { and } \xi_{1}-\delta(\epsilon)<\mathrm{y}_{\mathrm{n}}, \mathrm{n} \geq \mathrm{n}_{1} \ldots \ldots \ldots \tag{7}\\
& \text { and } \mathrm{u}_{\mathrm{n}}-\delta(\epsilon)<\mathrm{y}_{\mathrm{n}}<\mathrm{u}_{\mathrm{n}}+\delta(\epsilon)
\end{align*}
$$

Now define,

$$
\begin{equation*}
\mathrm{A}_{\delta}=\left\{\mathrm{n} \in \mathrm{~N} ; \mathrm{n} \geq \mathrm{n}_{1} \text { and } \mathrm{u}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}} \in\left(\xi_{1}-\delta(\epsilon), \xi_{1}+\delta(\epsilon)\right\}\right. \tag{8}
\end{equation*}
$$

\qquad
Because $\xi_{1}=\lim \inf u_{n}$ and from second condition of the theorem, it is very clear that A_{δ} is non empty. Let n be an arbitary element of A_{δ}. We need to show that $\mathrm{n}+1 \in \mathrm{~A}_{\delta}$.
By the definition of A_{δ} and Eq. (6) along with ξ_{1} is a fixed point of G, it follows,
$\left|\mathrm{Gy}_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}}\right| \leq\left|\mathrm{Gy}_{\mathrm{n}}-\xi_{1}\right|+\left|\xi_{1}-\mathrm{u}_{\mathrm{n}}\right|<\varepsilon+\delta(\varepsilon)<2 \varepsilon$
Hence we have, $\left|u_{n+1}-u_{n}\right| \leq\left|G y_{n}-u_{n}\right| \leq 2 \varepsilon$. Because $G u_{n} \neq u_{n}$ and $u_{n} \in\left(\xi_{1}-\delta(\epsilon), \xi_{1}+\delta(\epsilon)\right)$, therefore, $\xi_{1}-\delta(\epsilon)<u_{n}<\xi_{1}$ and Eq. (7) gives us $\xi_{1}-\delta(\epsilon)<u_{n+1}$. Ultimately, by this above argument, $\xi_{1}-\delta(\epsilon)<u_{n+1} \leq u_{n}+2 \varepsilon<\xi_{1}+2 \varepsilon$ with $\xi_{1}+2 \varepsilon<\xi_{2}$ on account of $2 \varepsilon<\xi_{2}-\xi_{1}$. Hence ξ_{1-} $\delta(\epsilon)<\mathrm{u}_{\mathrm{n}+1}<\xi_{1}+$ as $\xi_{1} \leq \mathrm{u}_{\mathrm{n}+1}<\xi_{1}+2 \varepsilon$ is impossible. Thus, $\mathrm{u}_{\mathrm{n}+1} \in\left(\xi_{1}-\delta(\epsilon), \xi_{1}+\delta(\in)\right)$. Now for $\mathrm{y}_{\mathrm{n}+1}$, by Eq. (7), $\xi_{1}-\delta(\epsilon)<\mathrm{y}_{\mathrm{n}+1}$.
Now we are left with, to prove $\mathrm{y}_{\mathrm{n}+1}<\xi_{1}+\delta(\varepsilon)$. By Eq. (7), we get $\mathrm{u}_{\mathrm{n}+1}-\delta(\epsilon)<\mathrm{y}_{\mathrm{n}+1}<\mathrm{u}_{\mathrm{n}+1}+\delta(\epsilon)$ as $\mathrm{n}+1>\mathrm{n}>\mathrm{n}_{1}$. As $\mathrm{u}_{\mathrm{n}+1}<\xi_{1}$, we get $\xi_{1}-\delta(\epsilon)<\mathrm{y}_{\mathrm{n}+1}<\xi_{1}+\delta(\epsilon)$ or $\mathrm{y}_{\mathrm{n}+1} \in\left(\xi_{1}-\delta(\epsilon), \xi_{1}+\delta(\epsilon)\right)$. This implies $\mathrm{n}+1 \in \mathrm{~A}_{\delta}$ defined by (8) and A_{δ} is equivalent to N . Hence $\left|\mathrm{u}_{\mathrm{n}} \xi_{1}\right|<\delta(\epsilon) \leq \in, \forall \mathrm{n} \geq \mathrm{n}_{1}$. Because this inequality is valid for every small $\in>0$ and $\left\{u_{n}\right\}$ converges to ξ_{1}.
By the same procedure, $\left\{u_{n}\right\}$ also converges to ξ_{2}. But the uniqueness of the limit point of the sequence is contracted by $\xi_{1} \neq \xi_{2}$.

$$
\therefore \xi_{1}=\xi_{2} \text { and }\left\{\mathrm{u}_{\mathrm{n}}\right\} \text { converges. }
$$

Let $\mathrm{a}_{0}=\xi_{1}=\xi_{2}$, then $\mathrm{Ga}_{0}=\mathrm{a}_{0}$
Hence the completion of proof
A weak derivation for general Banach spaces given by Rhoades is following.
Theorem 3 : Let K be a non empty closed convex subset of a Banach space. G be a cont. self map of K whose set of fixed points is non empty i.e. $\mathrm{F}(\mathrm{G}) \neq \phi$.
Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ are real sequences satisfying the following conditions.
$1 \quad 0 \leq \alpha_{\mathrm{n}}, \beta_{\mathrm{n}} \leq 1, \forall \mathrm{n}$
$2 \quad \lim \beta_{\mathrm{n}}=0$
$3 \quad \lim \sup \alpha_{n}>0$.
If $\left\{u_{n+1}\right\}$ converges, then it converges to a fixed point of G, where u_{n+1} is defined as,

$$
u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} G\left[\left(1-\beta_{n}\right) u_{n}+\beta_{n} G u_{n}\right], n \geq 0
$$

Proof

Let a_{0} be a limit point of $\left\{u_{n}\right\}$. Because K is closed and convex, $G(K) \subset K$.

International Advance Journal of Engineering, Science and Management (IAJESM) ISSN -2393-8048, July-December 2021, Submitted in October 2021, iajesm2014@gmail.com Therefore, $a_{0} \in$ K. By Eq. (2), we get $\left\|y_{n}-u_{n}\right\|=\beta_{n}\left\|G u_{n}-u_{n}\right\|$. As G is cont, the sequence $\left\{\mathrm{Gu}_{n}-u_{n}\right\}$ also converges. Second condition of the theorem results, into $\lim \left\|y_{n}-u_{n}\right\|=\lim \beta_{n}, \lim \left\|\operatorname{Gu}_{n}-u_{n}\right\|$ $=0$ and therefore $\lim y_{n}=a_{0}, \lim G y_{n}=G a 0$. Now, we shall prove that $\lim G y_{n}=a_{0}$.
By Equation (2), $\left\|u_{n+1}-u_{n}\right\|=\alpha_{n}\left\|y_{n}-u_{n}\right\|$.
Now, we get
$\lim \sup \left\|u_{n+1}-u_{n}\right\|=\lim \sup \alpha_{n} \lim \sup \left\|G y_{n}-u_{n}\right\|=0$
Now condition (III) implies that $\lim \left\|\mathrm{Gy}_{\mathrm{n}}-\mathrm{u}_{\mathrm{n}}\right\|=0$
which further implies that a_{0} is a fixed point of G.

REFERENCES

1 Dotson W.G., J. London Math. Soc., 2 (1972), 408-10.
2 Ganguly A., Math. Seminar Notes, 8(1980), 343-45.
3 Ganguly D.K. and Bandyopandhyay D., Some results on fixed point theorem using infinite matrix of regular type, Soochow J. of Math., 17(1991), 269-85.
4 Goebel K., Kirk W.A. and Shimi T.N., Bull. U.M.I., 7(1973), 67-75.
5 Gornicki J. and Rhoades B.E., A general fixed point theorem for involutions, Indian J. Pure Applied Math., 27(1996), 13-23.
6 Groetsch C.W., A note on segmenting Mann iterates, J. Math. Analysis and Applied., 40(1972), 369-72.
7 Ishikawa S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-50.
8 Istrat,esu, Vasile. I., Fixed point theory, an Introduction, 1, 26.
9 Kalinde Albert K. and Rhoades B.E., Fixed point Ishikawa Iterations, 170(1992), 600-06.
10 Khan M.S., Glasgow Math. J., 23(1982), 1-8.
11 Khan M.S. and Imdad M., J. Austral Math. Soc., 37(1984), 169-77.
12 Khan L.A., Fixed points by Ishikawa iterates in metric linear space, Math. Rep. Toyama Univ., 12(1989), 57-63.
13 Mann W.R., Mean value methods in iteration, Proc. Amer. Math. Soc., 23(1952), 506-10.
14 Rhoades, B.E., A general principle for Ishikawa iterations, Math. Morevica. (1977), 21-26.
15 Sharma P.L. and Yuel A.K., Mat Vesnik, 19(1982), 173-76.
16 Shaskin, Yu. A., Fixed points, 39.
17 Simmous, G.F., Introduction to Topology and Modern Analysis, 71, 148, 212, 248, 338.
18 Tiwary Kalishankar and Lahiri B.K., Bull, Cal. Math. Soc., 81(1989), 427-34.
19 Tiwary Kalishankar and Debnath S.C., on Ishikawa Iterations, Indian J. Pure Appl. Math., 26(1995), 743-50.

