
International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2018, Submitted in May 2018, iajesm2014@gmail.com

 Volume-9, Issue-I 103

A Quality Suite for Rule-based Object Oriented Systems
Prabhat Verma, Harcourt Butler Technological Institute, Kanpur. India, pvluk@yahoo.com

Vibhash Yadav, Institute of Technology and Management, Gurgaon, India, vibhashds10@yahoo.com

Prof. Raghuraj Singh, Harcourt Butler Technological Institute, Kanpur. India, rscse@rediffmail.com

Deepak Kumar Verma, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur,

deepak300572@gmail.com

ABSTRACT
 Rules play an important role in today’s software as business logic or domain knowledge, which is

prone to change much more frequently as compared to core functionality of the software. It is well

established that code for rules should be well separated from the core functionality in order to change

them easily as and when the need arises. Secondly, rules are best represented in declarative form with

some inference engine mechanism.

The purpose of this paper is to investigate how design characteristics impact the ability of a software

program to undergo changes, specifically in terms of its maintainability. To evaluate a program's

adaptability to modifications, we have expanded upon the ripple effect metric for rule-based object-

oriented systems. The proposed specialized metrics measure the quality of the software system in terms

of its ability to configure itself with change in business rules or domain knowledge
KEYWORD: Ripple Effect, Change Impact Analysis, Rule variables, Spread of rule variables.

 1. INTRODUCTION

 The importance of smart software applications is increasing day by day. Intelligent Search Engines,

Intelligent Help-Desk, Online Hospital Management are but a few examples which are knowledge

intensive in nature. Rule-based logic plays a crucial role in such applications along with core

functionality. Such applications are increasingly dominating the software Industry as an emergence of

the Service Oriented Architecture. Business logic can be viewed as a part of rule based Knowledge.

 In current software Engineering Practice, Object Oriented Methodology is used to design the core

functionality of software application. Knowledge or business logic about the domain is often implicit and

tangled with the core functionality. This is a bed design approach as it makes difficult to reconfigure the

software for incorporating change in rules. As a good design, firstly, the code for rules should be well

separated from the core functionality in order to change them easily as and when the

need arises. Hence, it is desirable to design and implement them as separate rule class. Secondly, the

rules themselves be represented in declarative form with some inference engine mechanism. It ensures

dynamic addition and deletion of rules. These two requirements, when fulfilled, ensure quality software

in terms of its adaptability with frequently changing rules.

2. EXISTING METHODOLOGIES

 Ripple effect has been used to measure the stability of procedural as well as object oriented software

after going through a modification. The ripple effect metric in object-oriented programming measures

the extent to which a local modification to a method or class may impact other methods or classes. In

essence, this metric enables maintainers to anticipate the consequences of any changes they may wish to

implement before actually carrying them out. [1].

 To determine the extent of change caused by a modification, the ripple effect metric currently

considers the impact of altering a single variable on the program as a whole. It should be noted that this

effect may not be limited to the immediate vicinity of the change, and may instead propagate to other

areas of the program. [2].

 To calculate ripple effect values, two forms of change propagation are utilized. [3].

 One type of change propagation used in calculating ripple effect values is intra-module change

propagation. This occurs when a modification to one variable within function1 affects other

variables within that same function, as shown in Figure 1 with the propagation between b, a, and

c..

mailto:iajesm2014@gmail.com
mailto:pvluk@yahoo.com
mailto:vibhashds10@yahoo.com
mailto:rscse@rediffmail.com
mailto:deepak300572@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2018, Submitted in May 2018, iajesm2014@gmail.com

 Volume-9, Issue-I 104

 Another type of change propagation used in calculating ripple effect values is inter-module

change propagation. This occurs when a modification to one function affects another function

within the program. (Fig. 1) e.g. propagation of c from function1 to function2.

Fig. 1: Intra-modular and Inter-modular change propagations

The purpose of intra-module change propagation is to determine which variables within a module are

impacted by the ripple effect resulting from a modification. This type of propagation involves analyzing

assignment and definition use information. Assignment counts the propagation of changes from the

right-hand side of an assignment to the left-hand side, while definition use counts the propagation of

changes from the definition of a variable to its subsequent use. It is well understood from Fig. 2. The

combination of information from assignment and definition-use pairings supply the required information

for calculating intra-modular change propagation.

In inter-module change propagation, the flow of program changes is across module boundaries. All the

affected modules as the consequence of the modified variable are to be considered.

Fig. 2: Assignment and Definition-Use Pairing

3. RULE BASED OBJECT ORIENTED SYSTEMS

3.1 Separating the rule variables

 Rule variables are those key variables in a program that participate in rules related to business logic

or domain knowledge. They are more prone to be reconfigured than other variables as the business rules

change. They may be scattered among several classes as per the definition of the rules. Thus, first task is

to identify the rule variables and assign them weights on the basis of assessing the probability of their

need to be reconfigured as change arises in business rules. These changes may be trivial as well as

nontrivial.

3.2 Ripple effect measures for rule variables

 To compute the ripple effect for rule based object oriented system, both intra-module and inter-

module change propagations must be considered. Change is propagated from rule objects towards core

functionality as rules change much more frequently. Hence, the origin of ripple is clearly defined in such

systems. Intra-modular change is to be calculated within the rule module itself using the above described

method. If the rules are represented in some declarative form with some inference mechanism in the rule

module, they can be added/deleted/modified in runtime without any difficulty. This is the ideal case in

which intra-module change propagation shall be zero for that rule object. If the rules are represented in

imperative way, inter-module change propagation will carry some value. Hence, the ripple measure

indicates how rules are represented in rule class (declarative or imperative).

3.3 Coupling Measure for rule objects

Module 1

 a = b;

 c = a + 1;

 Return c;

Module 2

 s = m1();

 Assignment

(1) a = b

 Definition-Use

 (2) c = a + 1

 Assignment

mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, January-June 2018, Submitted in May 2018, iajesm2014@gmail.com

 Volume-9, Issue-I 105

 Next important issue is related to how the rule modules are coupled to the other modules that belong

to core functionality. One can find three cases that are related to the type of coupling between rule based

knowledge and object oriented core functionality. In the first case, rules are able to directly access the

object and its attributes, which represents the most severe form of coupling, known as content coupling.

The second case involves a form of tight coupling known as control coupling, where the activation of

rule-based knowledge depends on the runtime properties of the object-oriented functionality. The most

complex events involve conditional activation of rules, which are referred to as dynamic events. In the

third case, a low level of coupling is present, specifically data coupling, where an object is passed as an

argument for use in the rule object. [4].

 A specialized metric, which is related to the Coupling measure of the rule modules with other

affected core functionality modules in terms of its ability to reconfigure itself to the frequent changes in

business rules, is proposed in this section. The proposed metric, ‘spread of the rule variables’ measures

how well separated are the rules from the core functionality in the object oriented software Lesser the

value of the metric, more is the software configurable with respect to change in business rules.

 By definition, the spread, for a single rule variable, is the ratio of the number of occurrences of the

variable outside its own class to the total number of its occurrences in the program. The value of spread

for a rule variable may lie between 0 and 1. In a bed design, if the rule variable is implemented inside the

core functionality and not as a separate class, then the value of spread for this particular variable is 1

(case 1). On the other side of the spectrum, if a rule variable is well separated in its own class through

some separation mechanism such as EJB (Enterprise Java Beans) or a lesser popular but more idealistic

AOP(Aspect Oriented Programming), the value is 0 for that variable (Case 2). But, in most cases, the

value of spread shall lie between 0 and 1 (Case 3). The value indicates how well separated is the rule

object from the other objects comprising core functionality and by what mechanism. Lesser the value of

the metric, better are the rules separated from core functionality and hence, indicates higher in software

quality terms.

4. CONCLUSIONS AND FUTURE WORKS

 The metrics mentioned above are specialized ones meant for Object Oriented Software which have

plenty of rules that are prone to frequent changes e.g. with changing business scenario or as a result of

competition in the market, one has to adapt rules because the rival has introduced a new offer in the

market. Adaptability or changeability is the major indicator of quality in such software. Ripple effect

measure and change Impact measure have been used for quality measure in procedural as well as Object

oriented Software. The proposed specialized software are meant for rule intensive object oriented

software and indicate the software quality in terms of its adaptability to changing rules in more specific

and realistic way.

 Most of the software metrics, available today, are based on the structural properties of the design or

code, although they have been useful to a great extent, they do not consider the actual content or domain

of the software system. The proposed metric is one step towards this direction. By identifying the

frequently changing rule variables from other variables and assigning weights to them appropriately, we

indirectly incorporate the domain knowledge in the metric for the quality measure purpose.

 The authors of this paper intend to work on calibration and measuring process of the proposed metric

in near future and apply the quality metric for some industry software.

REFERENCES
[1]. Nashat Mansour and Hani Salem, “ Ripple effect in object oriented programs”, Journal of Computational

Methods in Science and Engineering, Volume 6, Supplement 1/ 2006.

[2]. Billal Haider, “Ripple effect : A Complexity Measure for Object Oriented Software”, London South

Bank University

[3]. Black, SE: Measuring Ripple Effect for Object Oriented Paradigm, IASTE International Conference on

Software Engineering

[4]. M. D’Hondt. A survey of systems that integrate logic reasoning and object-oriented programming.

Technical report, Vrije Universiteit Brussel, 2003.

mailto:iajesm2014@gmail.com

