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Abstract 
The exponential growth of data necessitates robust and scalable processing techniques, 

propelling cloud-based big data frameworks like Apache Hadoop, Apache Spark, and Apache 

Flink into prominence. This study presents a comparative analysis of these three leading 

frameworks, evaluating their performance, resource utilization, scalability, and operational 

costs within real-world hybrid cloud environments (OpenStack and Azure). Utilizing 

benchmarks such as WordCount, TeraSort, K-means, and various classification workloads, our 

methodology involved systematic experimentation and analysis. 

Results indicate a consistent performance ranking by execution time: Flink outperformed 

Spark, which in turn surpassed Hadoop. Resource utilization varied significantly, with Hadoop 

exhibiting the highest inter-node data transfer and Spark the least. All frameworks 

demonstrated superior horizontal scalability compared to vertical scaling. Cost analysis 

revealed Spark as the most economical solution, while Hadoop proved to be the costliest. 

Specific benchmark insights highlighted Spark's approximate 5x faster performance for 

classification tasks over Hadoop, although its efficiency reduced with increasing dataset size. 

The discussion emphasizes that the preferred tool depends on the specific use case: Hadoop for 

cost-driven large-batch jobs, Spark for memory-bound iterative analytics, and Flink for low-

latency stream processing. Spark also offers a more mature ecosystem, while Flink provides 

generally faster failover through its checkpointing mechanism. The study concludes that while 

all frameworks have their merits, horizontal scaling is crucial for cloud deployments, and Spark 

currently offers the best overall value for hybrid environments. 
Key words: Big Data, Cloud Computing, Hadoop, Spark, Flink, Hybrid Cloud, Performance 
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1. Introduction 

The contemporary digital landscape is characterized by an unprecedented generation of data, 

often referred to as "Big Data." This exponential growth, encompassing vast volumes, diverse 

velocities, and varying veracity, presents both significant challenges and immense 

opportunities for data-driven insights. To effectively process, analyse, and extract value from 

such immense datasets, robust and scalable processing frameworks are indispensable. In this 

context, cloud-based big data frameworks, notably Apache Hadoop, Apache Spark, and Apache 

Flink, have emerged as dominant solutions. These distributed computing paradigms leverage 

the elastic and scalable nature of cloud infrastructure to handle the complexities of Big Data 

analytics. 

This study undertakes a comprehensive comparative analysis of these three prominent big data 

processing techniques—Hadoop, Spark, and Flink—within real-world cloud deployment 

scenarios. The primary objective is to evaluate their performance characteristics, resource 

utilization patterns, scalability properties, and associated operational costs when deployed in 

hybrid cloud environments. By providing a detailed empirical comparison, this research aims 

to offer valuable insights for practitioners and researchers in selecting the most appropriate big 

data processing framework based on specific application requirements and deployment 

strategies. 

2. Literature Survey 

The evolution of big data processing has seen several key paradigms emerge, each with distinct 

architectural designs and performance characteristics. 

• Hadoop MapReduce: As one of the foundational big data processing frameworks, Hadoop 

MapReduce is inherently batch-centric and relies heavily on disk-intensive operations. Its 
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core strength lies in its exceptional scalability and robust fault tolerance mechanisms, 

making it highly suitable for processing extremely large datasets. The MapReduce 

programming model, involving 'Map' for data transformation and 'Reduce' for aggregation, 
is well-suited for parallel processing of independent data blocks. While highly scalable 

and durable, its reliance on disk I/O can lead to higher latency for iterative or real-time 

workloads. 

• Apache Spark: Designed as a successor and an evolution to Hadoop MapReduce's 

limitations, Apache Spark introduced in-memory processing capabilities through its 

Resilient Distributed Datasets (RDDs) and DataFrames. The optimization of Spark's 

execution engine, particularly through the Catalyst optimizer, significantly enhances its 

performance, especially for iterative workloads common in machine learning algorithms 

and graph processing. By minimizing disk I/O and enabling efficient data reuse across 

multiple operations, Spark achieves substantially faster execution times compared to 

Hadoop MapReduce for a wide range of analytical tasks. Its unified engine supports 

various workloads, including batch processing, interactive queries (Spark SQL), stream 

processing (Spark Streaming), machine learning (MLlib), and graph processing (Graph 

X). 

• Apache Flink: Apache Flink distinguishes itself as a true stream processing framework, 

providing native support for event-time processing and sophisticated state management. 

Its architecture is specifically optimized for stateful real-time analytics, enabling low-

latency processing of continuous data streams. Flink's robust checkpointing mechanism 

ensures fault tolerance and exactly-once processing guarantees, which are crucial for 

mission-critical stream processing applications. While excelling in real-time scenarios, 

Flink also offers capabilities for batch processing, treating batches as bounded streams. Its 

emphasis on low-latency and high-throughput stream processing positions it as a leading 

choice for applications requiring immediate insights from continuously flowing data. 

This literature survey highlights the distinct advantages and typical use cases for each 

framework, setting the stage for a practical comparative study that evaluates these theoretical 

strengths in a real-world cloud context. 

3. Methodology 

To conduct a rigorous comparative analysis, a systematic methodology was employed, focusing 

on quantifiable metrics and controlled experimental conditions. 

3.1. Experimental Setup: The experiments were conducted in a hybrid cloud environment, 

leveraging a combination of private and public cloud resources. 

• Private Cloud Component: An 8-node OpenStack cluster was deployed. The operating 

system used across all nodes was Ubuntu 20.04. 

• Public Cloud Component: Microsoft Azure was utilized, specifically employing DS3 v2 

virtual machines. This hybrid setup allowed for the assessment of performance 

implications when resources are borrowed from a private cloud or when workloads span 

across different cloud providers, reflecting common enterprise deployment strategies. 

3.2. Performance Metrics: The evaluation focused on the following key performance 

indicators: 

• Execution Time: This primary metric measured the total time taken to complete various 

big data processing tasks, encompassing both batch-oriented and iterative workloads. 

• Resource Utilization: This metric assessed the efficiency with which computational 

resources (CPU, memory, network I/O) were consumed by each framework during task 

execution. 

• Scalability: The ability of each framework to handle increasing data volumes and 

computational demands was evaluated. This involved analyzing both horizontal scalability 

(adding more nodes) and vertical scalability (increasing resources on existing nodes). 
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• Data Transfer Volume: This metric quantified the amount of data exchanged between 

nodes within the distributed cluster, providing insights into network overhead and 

efficiency. 
• Operational Cost: An estimation of the financial expenditure associated with running each 

framework in the cloud environment was calculated, primarily based on AWS pricing as 

of June 2025 for comparable services. 

3.3. Benchmarking Workloads: A diverse set of standard big data benchmarks and common 

analytical workloads were used to simulate real-world scenarios: 

• WordCount: A classic benchmark for basic batch processing, involving counting the 

frequency of words in a large text corpus. 

• TeraSort: A data-intensive benchmark designed to measure the speed of sorting a large 

dataset, testing I/O performance and shuffle efficiency. 

• K-means Clustering: An iterative machine learning algorithm used for clustering data 

points into 'K' groups, assessing performance for iterative numerical computations. 

• Classification Workloads: Representing supervised machine learning tasks, these 

benchmarks involved training and testing classification models on large datasets, 

evaluating performance for complex analytical pipelines. 

3.4. Experimental Protocol: All experiments were repeated five (5) times under identical 

conditions, and the results were averaged to ensure statistical reliability and minimize the 

impact of transient system fluctuations. This rigorous approach enhances the validity and 

reproducibility of the findings. 

4. Results & Analysis 

The systematic execution of benchmarks across the hybrid cloud environment yielded 

significant insights into the comparative performance of Hadoop, Spark, and Flink. 

4.1. Hybrid-Cloud Deployment Performance: A notable observation was that the execution 

time consistently increased as private cloud nodes were borrowed or integrated into the hybrid 

setup. This suggests potential overheads associated with network latency, data transfer across 

different cloud environments, or differences in resource provisioning and management between 

OpenStack and Azure, which could impact overall system performance. 

4.2. Performance Ranking (Execution Time): Based on the execution time across various 

benchmarks, the performance ranking was consistently observed as: Flink > Spark > Hadoop 

This indicates that Flink generally achieved the fastest execution times, followed closely by 

Spark, with Hadoop consistently exhibiting the longest execution durations. This finding aligns 

with the architectural advantages of Flink for stream processing and Spark for in-memory 

iterative processing over Hadoop's disk-centric batch processing model. 

4.3. Resource Utilization: 

• Data Transfer Volume: Analysis of inter-node data transmission revealed that Hadoop 

transmitted the most data between nodes, primarily due to its intermediate disk writes and 

reads inherent to the MapReduce paradigm. In contrast, Spark transmitted the least amount 

of inter-node data, largely attributable to its in-memory processing capabilities and 

optimized shuffle operations. This directly impacts network bandwidth utilization and 

potentially overall job completion times, particularly in I/O-bound scenarios. 

4.4. Scalability: All three frameworks demonstrated better performance and efficiency through 

horizontal scaling (adding more compute nodes) rather than vertical scaling (increasing 

resources on individual nodes). This underscores the distributed nature of these frameworks, 

where parallelism across multiple machines is more advantageous for handling large datasets 

than concentrating resources on fewer, larger machines. 

4.5. Operational Cost: An analysis of estimated operational costs, based on AWS pricing, 

indicated that Spark was the most economical framework to run, while Hadoop proved to be 

the costliest. This cost difference can be attributed to Spark's efficient resource utilization, 
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faster execution times leading to shorter compute times, and lower data transfer volumes. 

Hadoop's longer execution times and higher I/O operations inherently lead to higher resource 

consumption over extended periods, contributing to increased costs. 
4.6. Benchmark-Specific Insights: 

• Classification Tasks: Spark significantly outperformed Hadoop for classification 

workloads, demonstrating approximately 5 times faster execution speeds. This highlights 

Spark's strength in iterative machine learning algorithms due to its in-memory processing. 

• Performance vs. Dataset Size: While Spark showed superior performance, its execution 

performance was observed to drop with increasing dataset size. This suggests that for 

extremely large datasets, even Spark's in-memory advantages can be challenged, 

potentially requiring more strategic memory management or partitioning. 

• Accuracy: It was noted that Hadoop might yield slightly better accuracy for certain tasks, 

possibly due to its batch-oriented, exhaustive processing nature, though this comes at the 

cost of significantly longer execution times. This trade-off between speed and marginal 

accuracy needs to be considered based on application requirements. 

5. Discussion 

The empirical results provide a strong basis for discussing the practical implications and 

optimal use cases for each big data processing framework within cloud environments. 

5.1. Batch vs. Streaming Capabilities: 

• Hadoop: Remains a reliable and robust choice for large-scale, cost-driven batch processing 

jobs where latency is not a critical concern. Its mature ecosystem and proven durability 

make it suitable for historical data analysis and reporting. 

• Spark: Extends beyond traditional batch processing by providing strong capabilities for 

iterative analytics, interactive queries, and machine learning workloads due to its in-

memory processing. It bridges the gap between pure batch and real-time processing, 

offering versatility. 

• Flink: Stands out as the superior choice for low-latency stream analytics and real-time 

processing of continuous data streams. Its native event-time processing and stateful 

computation are critical for applications requiring immediate insights and complex event 

processing. 

5.2. Ecosystem Maturity and Integration: 

• Spark: Benefits from a highly mature ecosystem with a rich array of connectors, libraries 

(e.g., MLlib, Spark SQL, GraphX), and extensive community support. This makes it highly 

versatile and easy to integrate with various data sources and tools. 

• Flink: While rapidly gaining traction, Flink's ecosystem lags slightly behind Spark in terms 

of breadth of connectors and mature libraries, though it is continuously expanding, 

particularly in the realm of stream processing. 

• Hadoop: Serves as the underlying foundation for many big data frameworks, including 

HDFS (Hadoop Distributed File System) which is often used by Spark and Flink for 

persistent storage. Its foundational components are highly mature. 

5.3. Fault Tolerance Mechanisms: 

• Spark: Employs RDD lineage for fault tolerance. In case of a node failure, Spark can 

recompute lost partitions by tracking the lineage of transformations that created the RDD. 

• Flink: Utilizes checkpoint snapshots for fault tolerance. Flink periodically takes consistent 

snapshots of its state, which allows for faster recovery and failover by restoring from the 

last successful checkpoint. This mechanism generally allows for faster failover and 

recovery compared to Spark's recomputation, especially for stateful stream processing. 

6. Conclusion 

This comparative study rigorously evaluated Apache Hadoop, Apache Spark, and Apache Flink 

in hybrid cloud environments, shedding light on their performance, resource utilization, 
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scalability, and cost implications. The findings reinforce that the optimal choice of a big data 

processing tool is highly dependent on the specific use case and organizational requirements. 

• Hadoop remains a viable option for cost-driven large-batch processing jobs where high 
throughput and robust fault tolerance are prioritized over low latency. 

• Spark emerges as the preferred framework for memory-bound iterative tasks, machine 

learning workloads, and interactive analytics, offering an excellent balance of speed, 

versatility, and cost-effectiveness in hybrid environments. 

• Flink is unequivocally the best choice for modern stream analytics and real-time 

processing applications that demand low-latency, event-time accuracy, and robust state 

management. 

Regarding cloud deployment strategies, the study strongly advocates for horizontal scaling 

over vertical scaling for all three frameworks to achieve optimal performance and efficiency. 

Furthermore, Spark currently offers the best value for hybrid cloud environments, balancing 

performance and operational cost effectively. 
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8. End Notes 

• Operating Environment: All experiments were conducted on an 8-node OpenStack cluster 

running Ubuntu 20.04, augmented by Microsoft Azure DS3 v2 virtual machines for the 

public cloud component of the hybrid setup. 

• Experimental Reliability: To ensure the robustness and reliability of the results, all 

experiments were meticulously repeated five times, and the reported performance metrics 

represent the average of these runs. 

• Cost Basis: Operational cost estimations were derived based on Amazon Web Services 

(AWS) pricing data as of June 2025, providing a contemporary perspective on cloud 

expenditure for these technologies. 
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