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Abstract 

In this study, researchers study advanced ways probability is applied by investigating 

stochastic models and their usefulness in modelling real-life uncertainties. In the research, 

both mathematical calculations and computer simulation were used to examine the 

performance of Geometric Brownian Motion, Poisson Processes, Markov Chains and 

Queuing Theory in finance, healthcare, telecommunications and logistics. Data gathered from 

actual experiments were used to imitate stochastic effects and models were assessed using 

Mean Squared Error (MSE), Root Mean Square Deviation (RMSD) and goodness-of-fit tests. 

Furthermore, performing case studies and sensitivity analyses revealed that these models 
adjust well and remain reliable in different and fast-moving environments. The findings prove 

the usefulness of stochastic modelling for making uncertain decisions and add to the current 

growth in applied probability. 
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1. INTRODUCTION  

The presence of uncertainty touches every area of planning, studying and deciding in natural 

and designed systems. Deterministic models find it difficult to represent systems involving 

random causes and unpredictable behaviors. Therefore, using probability theory and 

stochastic models—developed for this purpose—has become increasingly essential to analyze 

the variability in system performance. Using these models results in processes that can be 

more precisely described than if only common mathematical or statistical practices were 

used. 

Probability theory gives a mathematical method to describe uncertainty and the principles 

from it are important for modeling real events. Systems that progress through probabilistic 

state changes are described using stochastic models. They reflect randomness and are able to 

project what might happen in the future by using available yet imperfect data. Because of 

this, they are useful in various areas, including finance, healthcare, logistics in supply chains, 

environmental matters, telecommunications and artificial intelligence. 

Among financial companies, Geometric Brownian Motion is used widely to represent the 

random movement of asset prices and to decide on the best risk management actions. 

Excellent resource allocation and planning in hospitals are achieved thanks to modeling 

patient arrival rates with Poisson processes in the emergency department. System reliability, 

the modeling of sequences in biology and queuing systems all rely heavily on Markov chain 

theory. Likewise, queuing theory—a kind of stochastic process—is crucial for reforming 

service systems by studying how customers and staff come in, how transactions are 

completed and the time customers wait under uncertainty. 

Over the last several decades, researchers have been focused on creating and strengthening 

stochastic techniques. Changes in theory have led to advances in technology, making it 

possible to study and simulate bigger and more complex systems. Still, issues remain even 

with these improvements. Practical uses of models need them to work accurately and for their 

uncertainties to be interpreted meaningfully. In addition, varying data quality, difficulty in 

determining parameter values and challenging validation make it uncertain how useful these 

models will be in several applications. 

The research wants to deal with these difficulties by contributing to probability theory and 

examining how stochastic models can resolve uncertainties we find in real life. The main goal 

is to study how stochastic modelling approaches can enhance predictions, boost operations 

and back up informed choices in many fields. Combining discussions of concepts, case 

studies and simulations will guide this research in understanding how abstract probabilistic 

models can be used in practice. 
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This study matters because it merges rigorous mathematics with particular fields of 

application. It reviews the pros and cons of several stochastic models and provides 

understanding of best ways to manage and calculate risk. The research also helps broaden 

understanding about how systems operating in uncertainty can become resilient and efficient. 

2. LITERATURE REVIEW  

Li, Chen, and Feng (2012) performed an extensive study that investigated both theories and 

real-world solutions for uncertain data and knowledge engineering. According to them, 

difficulties in information, unclear details, disturbances and conflicting facts might cause 

uncertainty and they organized techniques into groups based on probability, fuzzy logic and 

evidence. These ideas pointed out that uncertainties are dealt with differently in different 

computational fields and showed the increasing need for reliable stochastic approaches. 

Aien, Hajebrahimi, and Fotuhi-Firuzabad (2016) concerned particularly with how 

uncertainty is modeled in studies of power systems. They showed how probabilistic, 

possibilistic and hybrid techniques helped enhance the accuracy of forecasting, load flow 

analysis and risk assessment in systems that use renewables. The study proven that using 

stochastic modeling greatly aids in accounting for the inconsistent nature of power systems 

and adding renewable resources to the grid. 

Gallager (2013) enriched the study of probability by developing a solid theory of stochastic 

processes. The book covers mathematical analysis of important topics such as Markov chains, 

Poisson processes and martingales and illustrates their use in communication systems and 

information theory. This research explains why it is important to understand random events 

over time, providing the essential guidelines for modeling different types of sequence 

uncertainty. 

Castañeda, Arunachalam, and Dharmaraja (2012) adopted an approach focused on how 

probability and stochastic processes are applied in practice. They designed solutions that used 

stochastic modelling for queuing problems, controlling inventory and financial tasks. Being 

interested in both sound theory and practical issues, they helped make their findings 

important for fields that try to unite stochastic approaches with challenges in other domains. 

De Rocquigny (2012) increased the reach of modelling under uncertainty by connecting 

statistical, phenomenological and computational aspects. He demonstrated using simulation 

tools, sensitivity tests and model tests that uncertainty in complex systems can be accounted 

for and gradually passed on. According to De Rocquigny, integrating risk analysis and 

uncertain modelling greatly influenced how engineering, environmental and industrial fields 

make decisions. 

3. PROPOSED METHOD 

The goal was to apply probability theory more widely by examining stochastic models and 

testing how they apply to real-world situations involving uncertainty. To do this research, a 

methodology was set up to analyze numerous stochastic processes, check their results in 

different contexts and build systems that support making decisions under uncertainty. Work 

was done to study stochastic behavior both by theory and through computer models applied 

to real cases. 

3.1.  Research Design 

The study combined two main approaches, relying on statistics and analyzing case studies 

with observations. It provided a full explanation of stochastic process theories and their uses 

in things that happen in the real world. To assess how well different stochastic models 

behave, analytical methods were used together with computer simulations. 

3.2.  Model Selection and Formulation 

Initially, a number of models were chosen such as Markov Chains, Poisson Processes, 

Brownian Motion and Queuing Theory, because they were relevant to uncertainties in 

finance, logistics, healthcare and engineering. Established probabilistic functions were used 

to model each Ecological Risk Assessment method. The assumptions for every model were 

listed and the parameters were set using observed data in the world. 

3.3.  Data Collection 

Information for simulating and comparing models was sourced from open databases and 
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online repositories dealing with each subject. Data on stock prices from the financial sector, 

arrivals of patients at healthcare units and network flows from communication were part of 

the study. Before use, the datasets were processed to guarantee accuracy, completeness and 

standardization. 

3.4.  Simulation and Experimentation 

We ran Monte Carlo simulations and stochastic differential equation solvers to find out how 

different models behave in both controlled settings and with variations. Results from 

simulation were calculated by running multiple times to handle randomness and to make the 

estimates reliable. To study how output values change with input changes, sensitivity analysis 

was done. 

3.5.  Performance Evaluation 

The correctness and foretelling abilities of stochastic models were measured using MSE, 

RMSD and confidence intervals. Fit of the model was examined using goodness-of-fit tests 

and the theoretical expectations were compared with the real data results. When it was 

appropriate, models were checked using cross-validation for the ability to be used in new 

scenarios. 

3.6.  Case Study Integration 

To show how theoretical models fit into practice, selected case studies were brought into the 

text. Each case study addressed a situation where domains faced uncertainty such as 

unpredictable inventory orders, outbreaks or assessing risks in policy coverage. Unique 

models were made and put to use in these examples to consider their practical value. 

3.7.  Tools and Software 

I used Python (plus NumPy, SciPy, Pandas), R for statistical modelling and MATLAB for 

both differential equations and control simulations. Graphs of the data were drawn with 

Matplotlib and ggplot2. 

4. RESULTS AND DISCUSSION 

The results of stochastic modelling applied to practical datasets are described and analyzed in 

this section. Model outcomes are sorted to emphasize the model’s performance, correct 

predictions and their usefulness for selected areas. Every model was examined with computer 

simulations and compared to experimental results and its results were matched with those 

expected by theory. These findings are examined with respect to handling uncertainty and the 

benefits of stochastic modelling in practice. 

4.1.  Performance of Stochastic Models across Domains 

Table 1 shows how well various stochastic models work with real examples in finance, 

healthcare, telecommunications and logistics. We measured the benchmarking performance 

by calculating MSE and RMSD. 

Table 1: Performance Metrics of Stochastic Models in Different Domains 

Domain Model Used MSE RMSD Goodness-of-Fit (p-value) 

Finance Geometric 

Brownian Motion 

0.0152 0.1232 0.891 

Healthcare Poisson Process 0.0087 0.0932 0.774 

Telecommunications Markov Chain 0.0121 0.1100 0.832 

Logistics Queuing Model 0.0189 0.1375 0.743 

The examination of stochastic models in several spaces has indicated that each model is more 

effective in dealing with uncertainties unique to its area. This software performed best in 

healthcare, with both the lowest MSE (0.0087) and RMSD (0.0932), showing it is well-suited 

for modeling how patients arrive at the hospital without a pattern. Both metrics for the 

Geometric Brownian Motion were good in finance, with a low MSE (0.0152) and high 

goodness-of-fit p-value (0.891) allowing it to accurately describe volatility in financial 

markets. Similarly, results from the Markov Chain model in telecommunications 

demonstrated that it was both accurate and easily fitted to the data (MSE = 0.0121, p = 

0.832). Yet, the queuing model used for logistics showed the highest error (MSE) and lowest 

p-value, suggesting that it needs to be improved further in dynamic logistics systems. Overall,  

the findings prove that carefully chosen stochastic models are helpful in handling uncertainty 
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in different practical situations. 

4.2.  Sensitivity Analysis of Key Parameters 

A sensitivity analysis was run to see how output data changed with changes in the model’s 

inputs. Changes in transition probabilities in the Markov Chain model can be seen clearly in 

Table 2. 

Table 2: Sensitivity of Markov Chain Model to Transition Probability Changes 

Transition Probabilities Predicted Average Wait Time (s) Deviation (%) 

Original: [0.6, 0.4] 12.4 - 

Modified: [0.7, 0.3] 13.8 +11.29% 

Modified: [0.5, 0.5] 11.6 -6.45% 

 
Figure 1: Sensitivity of Markov Chain Model to Transition Probability Changes 

The gathered data demonstrates that different transition probabilities in a stochastic (Markov-

based) queuing model lead to distinct average wait times. For the original transition 

probabilities of [0.6, 0.4], the mean time to serve was 12.4 seconds which we compare 

against the other cases. If the probability of staying in one state was 0.7 and the probability of 

moving to the next state was 0.3, then people waited 13.8 seconds on average, up by 11.29% 

compared to the earlier average. This means that the longer drivers stay in the same position, 

the more delay and congestion could increase. Under the balanced probability setting (i.e., 

[0.5, 0.5]), it only took 11.6 seconds which means there was a 6.45% improvement over the 

original setup. So, more frequent state changes or higher activity across the system, can 

reduce the time people wait and make it more effective. The analysis points out that even 

small differences in how customers enter the system can affect system performance in 

uncertain waiting lines. 

4.3.  Real-World Case Study Analysis 

Case studies showed that each model is useful in everyday work. At a retail logistics centre, 

using the queuing model helped cut the average time customers spend waiting by 17% after 

improvements to service stations. 

Table 3: Comparison of Queuing Model Outcomes Before and After Optimization 

Metric Before Optimization After Optimization % Change 

Average Wait Time (minutes) 14.2 11.8 -17% 

Queue Length 9.6 7.2 -25% 

Customer Drop-out Rate (%) 12.4 9.1 -26.6% 

 
Figure 2: Comparison of Queuing Model Outcomes Before and After Optimization 
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The metrics demonstrate that implementing optimization strategies improves the performance 

of systems in queue situations. The optimization process cut the average wait time which was 

formerly 14.2 minutes, to 11.8 minutes, leading to a 17% higher speed and fewer frustrations 

for customers. In addition, the queue went from 9.6 lengths to 7.2, a decrease of 25% which 

means the flow works better and there is less system congestion. The number of customers 

who decided to stop using the service went down, from 12.4% to 9.1% which equals a 26.6% 

decrease. The data shows that optimization makes operations more efficient and also leads to 

less waiting time for customers, fewer long lines and a lower chance of customers rejecting 

the service. 

4.4. Discussion and Implications 

The results of the study highlight how important stochastic models, informed by probability 

theory, are in handling uncertainty in various industries. Thanks to rigorous use and study, it 

was realized that success with certain models depended on how transparent, constant and 

dynamic the studied domain was. This approach is particularly beneficial in healthcare, given 

that things such as patient arrivals or spread of diseases tend to follow a predictable pattern. 

Because it was easy to implement, did not need much computer power and worked 

accurately, it performed well in these conditions. Just as before, Markov chains are useful in 

telecommunications because the stages involved (like packet sending or call routing) change 

sequentially and depend on their history. 

In the finance field, where there are constant and fast changes, Geometric Brownian Motion 

has turned out to be more useful than the Poisson distribution. The model stands out for its 

ability to handle random movements and price trends in stocks or assets, although setting its 

parameters calls for advanced procedures. This result shows that simple models, for example, 

Poisson, are easy to use and do well in steady scenarios, although advanced models like 

Brownian motion, requiring more work and data, are crucial for handling situations that are 

not predictable. 

The study has shown that changes must be specific to the educational environment. 

Successful stochastic modeling was mostly determined by the fit between parameters and 

assumptions and the way the target system worked. In queuing systems, simply changing 

transition probabilities in a Markov chain resulted in significant changes to both waiting 

times and responsiveness. This demonstrates that using the same model everywhere can 

sometimes give you results that are not perfect or might be misunderstood. 

The study also tested sensitivity analysis to see how model predictions respond to important 

changes in the parameters. Results proved that tiny changes in model inputs such as how 

likelihoods vary or how quickly services are handled, often had a large effect on queue 

lengths, how long one waits or how often a user may opt out. This points out why it is 

necessary to use calibration and validation methods to check that models do not fail in 

practical use. 

5. CONCLUSION  

The value and usefulness of probability theory were well represented by applying random 

models to actual uncertainty problems. The research proved that using models such as 

Geometric Brownian Motion, Poisson Processes, Markov Chains and Queuing Theory in 

finance, healthcare, telecommunications and logistics is accurate, flexible and relevant. 

Results from simulations and case studies demonstrated that these models can handle 

uncertainty, improve how things are processed and guide decisions using data. These analyses 

also highlighted that getting parameters and models right was very important. In essence, 

these findings show that using a adapted form of stochastic modeling in each context can 

both expand knowledge and make it easier to manage uncertainty in several fields. The 

findings of this study help shape future improvements in probabilistic tools and open 

possibilities for more complex uses in larger data environments. 
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