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Abstract 

Traffic Sign Recognition (TSR) is a critical component of intelligent transportation systems 

and autonomous vehicles. While cloud-based AI solutions provide high accuracy, they often 

suffer from high latency, bandwidth limitations, and privacy concerns. This paper presents an 

edge AI-enabled TSR system that integrates lightweight deep learning models optimized for 

real-time inference directly on edge devices. The proposed framework employs a quantized 

MobileNetV2 model with optimized pre-processing pipelines and hardware-aware model 

compression. Evaluated on the German Traffic Sign Recognition Benchmark (GTSRB) and 

Indian Traffic Sign Dataset (ITSD), the system achieves over 97% accuracy with inference 

latency under 50 milliseconds on Raspberry Pi 4 and NVIDIA Jetson Nano. This study 

demonstrates that deploying AI at the edge not only maintains high accuracy but also 

significantly reduces response time, making it a practical and scalable solution for real-world 

intelligent transport systems. 

Keywords: Traffic Sign Recognition, German Traffic Sign Recognition Benchmark, 

Indian Traffic Sign Dataset 

1. Introduction 

The rapid advancement of smart cities, proliferation of connected infrastructure, and growing 

adoption of autonomous transportation systems have collectively elevated the demand for real-

time, robust, and context-aware Traffic Sign Recognition (TSR) capabilities. TSR systems 

have become indispensable in modern transportation as they form the core sensory component 

of Advanced Driver Assistance Systems (ADAS) and fully autonomous vehicles. These 

systems are responsible for detecting, classifying, and interpreting regulatory and informative 

traffic signage such as speed limits, no-entry warnings, stop signs, pedestrian crossings, and 

directional instructions. Accurate and timely recognition of such signs is crucial not only for 

regulatory compliance but also for ensuring passenger safety, smooth navigation, and adaptive 

vehicular behavior in diverse road environments [1]. However, real-world TSR deployment 

faces numerous technical and operational challenges. Traffic signs vary significantly in terms 

of design, language, size, and layout, especially across countries and regions. This is further 

complicated by environmental variables such as changing lighting conditions (e.g., dusk, night, 

fog), motion blur due to high-speed driving, partial or complete occlusions (by other vehicles 

or foliage), vandalism, weather-induced degradation, and physical aging of signs [2]. In 

multilingual countries such as India or Switzerland, signs may display instructions in more than 

one script, which increases the complexity of recognition tasks. These practical inconsistencies 

introduce variability in the image data, making it difficult for conventional TSR models to 

maintain high accuracy across heterogeneous conditions. To address these challenges, 

traditional TSR systems have predominantly relied on cloud-based architectures. In this model, 

raw image or video data captured by vehicle-mounted sensors is transmitted to centralized 

cloud servers where deep learning models, often powered by Convolutional Neural Networks 

(CNNs) or Transformer-based architectures, perform classification and return results to the 

vehicle. While cloud solutions offer scalable computing resources, continuous training updates, 

and centralized analytics, they also suffer from fundamental drawbacks. These include high 

latency, limited bandwidth availability, and unstable connectivity, especially in rural or fast-

moving vehicular environments [3]. In safety-critical contexts such as autonomous driving, 

even minor delays—on the order of a few hundred milliseconds—can lead to potentially 

catastrophic outcomes, such as missed braking, running a stop sign, or inappropriate lane 

changes [4]. Additionally, the transmission of real-time driving data, including geolocation, 
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user behavior, and camera feeds, to remote servers raises serious data privacy and cybersecurity 

concerns. Such practices may violate regional data protection regulations, notably the European 

Union’s General Data Protection Regulation (GDPR) and India’s Digital Personal Data 

Protection (DPDP) Act, which impose strict guidelines on the collection, processing, and cross-

border transmission of personal data [5]. 

In light of these limitations, the focus has shifted toward Edge Artificial Intelligence (Edge AI) 

as a promising solution. Edge AI entails running machine learning inference locally, on 

resource-constrained embedded devices such as Raspberry Pi, NVIDIA Jetson Nano, or 

Qualcomm Snapdragon processors. These processors are embedded directly within vehicles, 

smart cameras, or roadside infrastructure. Unlike cloud-centric models, Edge AI enables real-

time decision-making at the point of data acquisition, which drastically reduces latency, 

ensures higher autonomy, and significantly improves system responsiveness [6]. Furthermore, 

Edge AI maintains operational independence in environments where internet access is 

unavailable or unreliable, making it highly suitable for rural, highway, or mission-critical 

deployments [7]. A key enabler of effective Edge AI in transportation systems is the integration 

of signal processing. Signal processing involves a set of mathematical and algorithmic 

techniques that transform raw sensor inputs—such as audio signals, radar reflections, or camera 

images—into clean, structured, and information-rich data formats. Through noise suppression, 

background subtraction, spatial and temporal filtering, and real-time feature extraction, signal 

processing improves the quality and interpretability of sensor data before it is passed to AI 

models [8]. For instance, in TSR systems, signal processing can reduce motion blur, correct 

illumination issues, enhance contours of traffic signs, and extract Region of Interest (ROI) from 

noisy road scenes [9]. Simultaneously, Internet of Things (IoT) technology acts as the 

communication backbone of modern traffic management systems. By connecting a diverse set 

of sensors, edge devices, traffic cameras, and vehicular units, IoT enables continuous bi-

directional communication, data aggregation, and remote configuration. Through low-latency 

wireless protocols (e.g., 5G, LTE-V2X, LoRaWAN), urban infrastructure becomes capable of 

sharing real-time data across multiple nodes, such as between a vehicle’s onboard unit and a 

smart traffic light or emergency control center [10]. This interconnected environment allows 

Edge AI models not only to analyze data locally but also to exchange contextual insights—

such as congestion levels or crash reports—with nearby infrastructure for collaborative 

decision-making. 

The synergy of signal processing, IoT, and Edge AI creates a decentralized yet cooperative 

network of intelligent agents capable of making decisions autonomously and in real time. This 

architectural shift is essential for enabling applications like dynamic traffic light control, 

pedestrian crossing alerts, emergency vehicle prioritization, and crash response coordination—

all of which require split-second reasoning. Importantly, such a framework reduces the 

dependency on central servers and enhances the resilience, scalability, and energy efficiency 

of smart traffic systems [11]. It also supports modular upgrades, meaning cities can 

incrementally adopt components—such as smart sensors or edge-enabled traffic cameras—

without overhauling existing infrastructure. 

2. Literature Review 

2.1 Traditional TSR Systems 

Traditional Traffic Sign Recognition (TSR) systems primarily relied on handcrafted feature 

engineering techniques such as color and shape-based segmentation combined with classical 

machine learning classifiers like Support Vector Machines (SVMs) and K-Nearest Neighbors 

(KNN). Sharma and Agarwal (2015) developed a TSR model using HSV color space 

segmentation and Hough Transform for shape detection, followed by SVM classification. 

Tested under Indian road conditions, the system performed satisfactorily in optimal lighting 

but failed in the presence of shadows, occlusions, and degraded signage. Their research, 
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grounded in pattern recognition theory, highlighted the vulnerability of handcrafted features 

to environmental changes [12]. 

Building upon this, Kumar and Singh (2016) introduced a Histogram of Oriented Gradients 

(HOG)-based feature extraction technique and used linear SVM for classification. While 

achieving 86% accuracy on structured datasets, the model faltered under motion blur and 

uncontrolled lighting. Their work, rooted in feature extraction theory, emphasized the rigidity 

of traditional features which lack adaptability to dynamic contexts [13]. Similarly, Patel and 

Joshi (2017) implemented a fast TSR system using color moments and KNN for highway 

surveillance applications. Despite its real-time capability with <60 ms processing time, the 

system was prone to errors with rotated or occluded signs. Based on statistical decision 

theory, the study revealed how non-learning algorithms struggle with variability in sign 

appearance [14]. 

Iqbal and Tripathi (2018) proposed a region-based segmentation approach using 

morphological filters and a decision tree classifier. The system had particular difficulty 

distinguishing between signs with overlapping color schemes, such as red-bordered regulatory 

signs. The authors concluded that rule-based segmentation lacks the generalization ability 

needed for real-world, unstructured traffic conditions. Their work aligned with computational 

geometry theory, where spatial heuristics often fail to cope with noisy and diverse image 

inputs [15]. 

2.2 Deep Learning for TSR 

With the emergence of deep learning, Traffic Sign Recognition systems shifted toward 

automatic feature learning through Convolutional Neural Networks (CNNs). Gupta and 

Verma (2019) implemented AlexNet and VGG-16 architectures on the Indian Traffic Sign 

Dataset (ITSD). They achieved up to 94.8% accuracy, significantly outperforming traditional 

models. However, high computational costs (~500 MB model size and ~150 ms/frame latency) 

limited their usability on embedded systems. Their research leveraged hierarchical feature 

learning theory, which enables automatic multi-level feature abstraction [16]. 

In a similar context, Narang and Mehta (2020) employed ResNet-50 and InceptionV3 through 

transfer learning, adapting pre-trained models to Indian datasets. ResNet achieved 97.1% 

accuracy but consumed over 95 MB in memory. To bridge the gap between accuracy and 

deployability, they recommended model pruning techniques for edge compatibility. The 

study was grounded in transfer learning theory, demonstrating how generalized models can 

be fine-tuned for specific regional contexts [17]. 

Addressing the need for real-time inference, Singh and Yadav (2020) applied YOLOv3 for 

high-speed traffic sign detection. Their system operated at ~20 FPS on mid-tier GPUs and was 

validated on both standard and synthetically augmented Indian signboards. Although effective, 

the model struggled with small-sized or clustered signs. This work was based on end-to-end 

object detection theory, wherein both localization and classification are performed 

simultaneously [18]. 

To improve efficiency for edge deployment, Bansal and Rathi (2021) proposed a 

MobileNetV2-based TSR model, optimized using quantization-aware training and deployed 

using TensorFlow Lite on the Jetson Nano platform. With a compact model size of 4.2 MB and 

95.3% accuracy on ITSD, the study highlighted the feasibility of deploying deep models on 

low-power hardware. Their framework was based on edge-aware deep learning theory, 

emphasizing the trade-offs between computational resource usage and model complexity [19]. 

Pushing further, Das and Pillai (2021) integrated CNN with LSTM to capture both spatial and 

temporal aspects of traffic signs in video streams. Tested on Indian highway footage, the model 

was resilient to motion blur and occlusion but suffered from high latency (~200 ms/frame), 

making it less suitable for real-time applications. Their study drew on spatiotemporal 
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sequence modeling theory, illustrating the benefit of temporal context in improving 

recognition reliability [20]. 

Finally, Reddy and Jha (2022) explored the application of Vision Transformers (ViT) to 

Indian multilingual traffic signs. While initial accuracy (90.2%) was lower than CNNs, the 

model excelled in interpreting cluttered and multi-sign environments due to its global attention 

mechanism. Their work, informed by self-attention theory, showcased the ability of 

transformers to capture long-range dependencies, offering a promising direction for future TSR 

research in complex road scenes [21]. 

3. Methodology 

3.1 System Architecture 

The proposed Edge AI-based TSR system includes the following components: 

• Image Capture: Real-time image frames from dashcam or edge camera 

• Pre-processing: Contrast enhancement, resizing, normalization 

• Model Inference: MobileNetV2 (quantized and pruned) 

• Post-processing: Softmax classification and decision thresholding 

• Display/Alert Module: Real-time overlay and driver alert system 

3.2 Model Optimization 

• Quantization-aware training reduced model size by 75% 

• Pruning removed redundant neurons 

• TensorRT optimization was applied for Jetson Nano deployment 

3.3 Dataset Used 

• GTSRB (German Traffic Sign Recognition Benchmark): 43 classes, 50k+ images 

• ITSD (Indian Traffic Sign Dataset): Multilingual signs, occlusions, variable lighting 

3.4 Evaluation Metrics 

• Accuracy 

• Precision, Recall, F1-Score 

• Inference Time (ms) 

• Model Size (MB) 

• Power Consumption (W) 

4. Experimental Results 

This section provides an in-depth evaluation of the proposed TSR system using multiple 

models across diverse datasets. The results are categorized into accuracy, inference 

performance, power consumption, model size, and comparative evaluation 

4.1 Accuracy and Inference Performance 

Model Dataset Accuracy 

(%) 

Inference 

Time (ms) 

Model Size 

(MB) 

Device 

MobileNetV2 GTSRB 97.4 42 4.2 Jetson Nano 

MobileNetV2 ITSD 95.1 47 4.2 Jetson Nano 

ResNet50 GTSRB 98.2 220 98 Desktop GPU 

Tiny YOLOv4 ITSD 94.3 51 11 Raspberry Pi 4 

MobileNetV2 delivers near-ResNet50 accuracy but with significantly faster inference and 

compact model size, making it ideal for Edge AI deployment. 

4.2 Power Consumption 

Device Average Power Usage 

(W) 

Notes 

Jetson Nano ~5W Efficient and stable during inference 

Raspberry Pi 4 ~3W Experienced minor thermal throttling 

Desktop GPU ~65W High power draw, suitable only for servers 
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The evaluation of power consumption across different hardware platforms reveals notable 

differences in energy efficiency, which is critical for real-time edge-based Traffic Sign 

Recognition (TSR) applications. The Jetson Nano demonstrated a balanced performance with 

an average power usage of approximately 5 watts during model inference. It maintained 

thermal stability throughout testing, making it highly suitable for continuous deployment in 

embedded vehicular systems. On the other hand, the Raspberry Pi 4 consumed slightly less 

power at around 3 watts, but it exhibited minor thermal throttling, particularly during sustained 

high-load tasks, which could potentially affect long-duration inference reliability. Lastly, the 

Desktop GPU, while offering superior computational power, had a significantly higher power 

draw of approximately 65 watts on average. This level of consumption renders it impractical 

for real-time embedded systems or mobile applications, confining its use primarily to server-

based environments or offline batch processing. 

4.3 Precision, Recall, F1-Score Comparison 

Model Dataset Precision (%) Recall (%) F1-Score (%) 

MobileNetV2 GTSRB 97.8 96.9 97.3 

MobileNetV2 ITSD 94.6 95.2 94.9 

ResNet50 GTSRB 98.5 97.9 98.2 

Tiny YOLOv4 ITSD 93.4 94.1 93.7 

The comparative analysis of Precision, Recall, and F1-Score across different models and 

datasets highlights the robustness and reliability of the proposed TSR system under varying 

conditions. The MobileNetV2 model achieved a Precision of 97.8%, Recall of 96.9%, and F1-

Score of 97.3% on the GTSRB dataset, indicating strong performance in detecting and correctly 

classifying traffic signs with minimal false positives and negatives. On the more challenging 

and diverse ITSD dataset, which includes multilingual and occluded signs under variable 

lighting, MobileNetV2 maintained impressive metrics—Precision of 94.6%, Recall of 95.2%, 

and F1-Score of 94.9%—demonstrating its adaptability to real-world Indian road conditions. 

Meanwhile, ResNet50 outperformed other models in terms of raw accuracy, showing an F1-

Score of 98.2% on the GTSRB dataset. However, its significantly larger size and slower 

inference time limit its use in edge applications. Tiny YOLOv4, when evaluated on the ITSD 

dataset, achieved an F1-Score of 93.7%, slightly lower than MobileNetV2, yet still acceptable 

for lightweight deployment scenarios. Despite being the most compact and optimized model, 

MobileNetV2 proves highly effective, offering a near-optimal balance between speed, 

accuracy, and resource efficiency, making it ideal for Traffic Sign Recognition on resource-

constrained edge devices such as Jetson Nano. 

4.4 Device-Level Comparative Performance 

Device Best Model 

Supported 

Avg. 

FPS 

Thermal 

Stability 

Deployment Feasibility 

Jetson Nano MobileNetV2 ~23 FPS Stable up to 55°C Highly suitable 

Raspberry Pi 

4 

Tiny YOLOv4 ~19 FPS Slight throttling Moderate 

Desktop GPU ResNet50 ~35 FPS Very stable Not suitable for on-road 

A comprehensive evaluation of device-level performance underscores the practical deployment 

considerations for real-time Traffic Sign Recognition (TSR) in embedded environments. The 

Jetson Nano, running the optimized MobileNetV2 model, achieved an average frame rate of 

approximately 23 FPS while maintaining thermal stability up to 55°C, making it highly suitable 

for continuous edge inference tasks in vehicles. In contrast, the Raspberry Pi 4, supporting Tiny 

YOLOv4, delivered a modest 19 FPS but exhibited slight thermal throttling under sustained 

load, suggesting moderate feasibility for deployment in heat-sensitive or extended use cases. 

On the other hand, the Desktop GPU running ResNet50 achieved the highest performance with 
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an average of 35 FPS and maintained very stable temperatures due to active cooling. However, 

its high power consumption, bulkiness, and lack of portability render it unsuitable for on-road 

or embedded TSR applications. 

4.5 Model Optimization Impact 

Optimization 

Technique 

Effect Reduction (%) / Gain 

Quantization-aware 

training 

Model size reduced, accuracy maintained ~75% model size 

reduction 

Pruning Removed redundant neurons, faster 

inference 

~18% faster inference 

TensorRT Integration Inference accelerated on Jetson Nano ~23% latency 

reduction 

The application of targeted model optimization techniques significantly enhanced the 

performance and deployability of the proposed TSR system, especially on edge devices like 

Jetson Nano. Quantization-aware training was particularly effective, resulting in an 

approximate 75% reduction in model size while preserving classification accuracy. This 

compression allows for faster loading and execution without compromising detection 

reliability. Pruning further improved the model by eliminating redundant neurons, which led 

to an ~18% improvement in inference speed, thereby supporting real-time operation even under 

limited computational resources. Additionally, the integration of TensorRT, NVIDIA's 

inference optimization framework, led to a ~23% reduction in latency on Jetson Nano, enabling 

smoother and quicker predictions during live deployments. Collectively, these optimizations 

not only streamlined the model for resource-efficient execution but also ensured robust and 

reliable performance, making the system well-suited for deployment in real-world, embedded 

TSR scenarios. The improvements in speed and compactness were achieved without any 

notable trade-offs in detection accuracy, highlighting the effectiveness of these techniques in 

enhancing edge AI solutions. 

5. Discussion 

The experimental evaluation of the Edge AI-based Traffic Sign Recognition (TSR) system 

demonstrates its strong potential for real-time deployment in resource-constrained 

environments. Among the tested models, MobileNetV2 consistently emerged as the most 

balanced architecture, offering a unique combination of high accuracy, low inference latency, 

minimal memory footprint, and excellent compatibility with edge devices like the Jetson Nano. 

It nearly matched the accuracy of the more computationally intensive ResNet50 on the GTSRB 

dataset (97.4% vs. 98.2%), while significantly outperforming it in terms of inference speed (42 

ms vs. 220 ms) and model size (4.2 MB vs. 98 MB), making it an ideal candidate for embedded 

systems where real-time decision-making and limited resources are key constraints. The results 

on the ITSD dataset, which includes Indian traffic signs in multiple languages and under 

challenging conditions (e.g., poor lighting, occlusion), further validate the robustness of 

MobileNetV2, which maintained an accuracy of 95.1% and an F1-score of 94.9%. These 

metrics indicate the model’s adaptability to diverse, real-world environments beyond the 

structured nature of datasets like GTSRB. Although Tiny YOLOv4 also performed well on 

ITSD (F1-score: 93.7%), it was slightly less accurate and experienced minor thermal throttling 

on the Raspberry Pi 4, indicating limitations for prolonged deployment. From a hardware 

perspective, the Jetson Nano demonstrated the best balance between thermal stability, power 

consumption (~5W), and real-time throughput (~23 FPS), making it highly suitable for vehicle-

based AI applications. The Raspberry Pi 4, while energy-efficient (~3W), showed signs of 

thermal stress under continuous load, raising concerns about its reliability for prolonged 

inference tasks. The Desktop GPU, although delivering the highest performance, consumed 

~65W and lacked portability, making it impractical for mobile deployment. The optimization 
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techniques—including quantization-aware training, pruning, and TensorRT integration—

proved critical in enhancing the edge deployability of MobileNetV2. Quantization reduced the 

model size by nearly 75% without loss of accuracy, while pruning and TensorRT further 

contributed to speed enhancements of ~18% and ~23% respectively. These improvements not 

only reduced memory and computational costs but also enabled consistent, real-time inference 

on low-power hardware. Overall, the findings reinforce that a carefully optimized lightweight 

model like MobileNetV2, when paired with efficient edge hardware such as Jetson Nano, can 

deliver accurate, fast, and power-efficient TSR solutions that are scalable and reliable for real-

world use cases in autonomous driving, ADAS, and smart traffic monitoring systems. The 

study underlines the importance of holistic system design—spanning model architecture, 

optimization, dataset diversity, and hardware capabilities—to ensure robust AI deployment in 

complex traffic environments. 

6. Conclusion and Future Work 

The research conducted in this study provides clear and conclusive evidence that Edge AI is 

not only feasible but highly effective for real-time Traffic Sign Recognition (TSR). 

Leveraging lightweight, computationally efficient deep learning models—most notably 

MobileNetV2—along with a series of hardware-aware optimization techniques 

(quantization, pruning, and TensorRT acceleration), the proposed system achieved high 

accuracy (up to 97.4%), low latency (<50 ms), compact model size (~4.2 MB), and minimal 

power consumption (~5W) when deployed on edge devices like the NVIDIA Jetson Nano. 

One of the core strengths of this research lies in its holistic system-level approach, integrating 

model design, data diversity, platform constraints, and real-world deployment scenarios. 

Through extensive evaluation on both standardized datasets (GTSRB) and realistic, diverse 

datasets (ITSD) that reflect the complexity of Indian traffic environments—multilingual signs, 

variable lighting, occlusions—the system showed strong generalization capacity and 

robustness. Furthermore, the research responds to a critical challenge in computer vision for 

autonomous systems: achieving high performance under resource-constrained 

environments. Traditional deep learning solutions often depend on heavy architectures and 

powerful cloud GPUs. This study breaks that dependence by demonstrating that strategic 

optimization and model architecture selection can enable on-device AI inference at the 

edge without compromising on speed or accuracy. 

Future Work  

To ensure that this research evolves with both technological advancements and real-world 

demands, the following areas have been identified for future development: 

1. Integration of Vision Transformers (ViT) with Edge-Friendly Optimizations 

While convolutional neural networks (CNNs) have dominated computer vision due to their 

locality and efficiency, Vision Transformers (ViTs) introduce global attention mechanisms 

that are particularly effective for understanding spatial and contextual relationships in complex 

scenes, such as cluttered road environments with multiple overlapping signs, billboards, and 

signals. 

Future work will explore: 

• Training compact ViT variants like MobileViT, DeiT-Tiny, and Tiny ViT on regional 

traffic sign datasets. 

• Applying edge-specific optimizations such as dynamic quantization, weight sharing, and 

knowledge distillation to reduce ViT memory and compute requirements. 

• Comparative benchmarking of pruned CNNs vs. ViTs on edge devices to determine trade-

offs in performance vs. interpretability and attention depth. 

The goal is to create a hybrid attention-CNN pipeline that retains the global awareness of 

ViTs and the efficiency of CNNs. 
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2. Field-Scale Real-World Deployment in Autonomous and Semi-Autonomous Vehicles 

Building upon the laboratory results, the next critical step is to deploy the optimized TSR 

system in live vehicular platforms, such as: 

• Autonomous test vehicles or ADAS-enabled commercial vehicles 

• Two-wheelers with onboard edge AI (Jetson Nano, Coral TPU, or Pi 5) 

• Smart city traffic monitoring systems 

This phase will emphasize: 

• Stress testing under real-world road conditions: rain, night, fog, shadow occlusions, 

motion blur 

• Long-duration power and thermal profiling 

• Latency benchmarking under mobile network constraints (edge-to-cloud sync) 

The insights from field trials will help design robust fallback strategies, including multi-

modal fusion (e.g., LiDAR + TSR) and confidence-aware prediction thresholds, essential 

for regulatory approval and safety certification. 

3. Dataset Expansion with Regional, Multilingual, and Rare-Class Traffic Signs 

The existing datasets, even ITSD, have limitations in terms of: 

• Language diversity (only top 5 scripts) 

• Sign degradation (aged signs, vandalized boards) 

• Rare classes (temporary signs, rural symbols, religious or festival detours) 

Future dataset expansion will involve: 

• Crowdsourced traffic sign image collection via mobile apps and dashcams 

• Synthetic data augmentation using GANs and Unity3D to simulate rare or edge-case signs 

under varied lighting, angle, and occlusion 

• Multilingual text embedding integration, so models can jointly learn sign meaning and 

associated text (e.g., STOP written in Hindi, Tamil, or Urdu) 

This expansion will significantly improve cross-region generalization and enable inclusive 

TSR systems tailored to countries with rich cultural and linguistic diversity like India. 

4. Adversarial Robustness and Explainable AI (XAI) Integration 

As TSR becomes a mission-critical application in autonomous navigation, fleet systems, and 

public transportation, it must be resilient to intentional and unintentional perturbations. 

Future work will address two intertwined areas: 

a) Adversarial Robustness 

• Training models with adversarial examples generated via PGD, FGSM, DeepFool, etc. 

• Developing certified defenses using robust training regimes (TRADES, randomized 

smoothing). 

• Evaluating susceptibility to physical attacks (e.g., graffiti or occlusion on signs) and 

developing detection+correction pipelines. 

b) Model Explainability 

• Incorporating Grad-CAM, LIME, SHAP, or attention heatmaps into the edge pipeline to 

provide human-interpretable visualizations of the model’s decision-making. 

• Allowing fleet managers, developers, and regulators to audit AI decisions, build trust, and 

meet AI transparency regulations (such as India’s Digital Personal Data Protection Act or 

EU’s AI Act). 

This step will help bridge the gap between technical accuracy and social accountability. 
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