R@TINDEXING

July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

Investigating the Harmful Impact of Android Cell Phone Use Across Age Groups in the Amravati Region, Maharashtra

Dr. N.R. Thorat, Department of zoology, Vidya Bharati Mahavidyalaya, Camp Amravati, Email-nandkishorthorat76@gmail.com

Abstract

This cross-sectional study examines the physical, cognitive, and psychosocial impacts of Android Smartphone use among children (<12), adolescents (13–18), adults (19–60), and elderly (>60) in Amravati, Maharashtra. Using standardized questionnaires, cognitive tasks, eye/posture assessments, and focus-group interviews, we analyzed usage patterns, dependency behaviors, and health outcomes. Results revealed significant associations between prolonged screen time and attention deficits, sleep disturbances, musculoskeletal discomfort, and smartphone dependency symptoms across all age groups. Findings highlight the need for age-specific interventions and awareness programs in semi-urban Indian communities.

Keywords: Android Smartphone overuse, Screen with dind health, Age-specific digital impact Introduction

Smartphones—particularly Android devices—have become indispensable tools for communication, education, and entertainment in modern India. While they offer significant benefits, their excessive use has been associated with sleep disturbances, musculoskeletal pain, attention deficits, anxiety, and depression (Kwon et al., 2013; Gupta & Krishnan, 2017). Existing research has primarily focused on urban populations, leaving a gap in understanding the age-specific health and cognitive impacts of Smartphone overuse in semi-urban regions like Amravati, Maharashtra, where digital literacy and access vary considerably. Furthermore, the growing penetration of Smartphone's among children, adolescents, and even the elderly raises concerns about long-term behavioral and physiological consequences. Therefore, this study aims to systematically investigate the harmful impact of Android smartphone use across different age groups in Amravati.

The objectives of the study are to:

- 1. **Quantify** daily Android Smartphone usage patterns and dependency levels across age groups.
- 2. **Evaluate** age-specific physical (vision strain, posture issues), cognitive (attention, memory), and psychosocial outcomes (sleep quality, anxiety).
- 3. **Recommend** practical, age-tailored interventions for healthier Smartphone use.

Materials and Methods

Study Design & Participants

A cross-sectional study was conducted in Amravati. 200 participants (50 per age group) were recruited via schools, colleges, workplaces, and senior citizen groups.

Data Collection Tools

ADVANCED SCIENCE INDEX

- Usage Patterns: Android screen-time logs, self-report questionnaires
- **Dependency:** Smartphone Addiction Scale (Kwon et al., 2013)
- Cognitive Tests: Trail Making Test (attention), Digit Span (working memory)
- **Physical Health:** Eye strain and posture assessment checklist
- **Psychosocial:** Pittsburgh Sleep Quality Index, Beck Anxiety Inventory

Participants completed surveys and cognitive tests. Clinical checks for eye strain and posture were conducted. Focus-group interviews (5 per group) provided qualitative insights.

Data Analysis

Quantitative data analyzed using ANOVA and Pearson's correlation. Qualitative interview data underwent thematic coding.

R@TINDEXING

INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM)

July-December 2023, Submitted in July 2023, injesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 =6.753

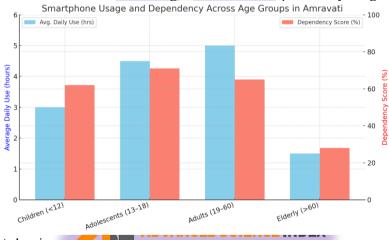

Observations and Results

Table 1 Summary of key findings across age groups

Age Group	Avg. Daily	Dependency	Key Physical	Cognitive	Psychosocial
	Use (hrs)	Score (% High)	Effects	Effects	Effects
Children	3.0	62%	Eye strain	Attention	Irritability
(<12)			(40%), mild	deficits (-1.2	when phone
			posture issues	SD vs norm)	removed
Adolescents	4.5	71%	Eye strain	Memory	Poor sleep
(13-18)		\$ B	(52%), neck	lapses	quality, mild
		8	pain(35%)	$(\beta = -0.41,$	anxiety
		19 2 \$	住一个一	p=0.003)	
Adults (19–	5.0	65%	Neck/shoulder	Cognitive	Work-life
60)		Wik	PRIE 1301%	distraction	imbalance,
		The Free	Eye flangdie	during work	relationship
					strain
Elderly	1.5	28%	Visual fatigue	Slower	Mild tech-
(>60)			(50%)	cognitive task	related
				completion,	anxiety
				longer fixation	
		9		times	

Statistical Highlights

- Sleep quality strongly correlated with screen time in adolescents (r = -0.45, p<0.01).
- Smartphone dependency linked to workplace distraction in adults (r = 0.42).
- Elderly required 30% more time on cognitive tasks compared to younger groups.

Here's the **bar chart** showing:

- Blue bars → Average daily Smartphone use (hours)
- Red bars → Dependency score (% reporting high dependency)

Discussion

The findings parallel global studies on the negative impacts of smartphone overuse, particularly in children and adolescents (Twenge, 2019; Panova & Carbonell, 2018). Adolescents in Amravati exhibited **sleep disruption and anxiety**, echoing patterns seen in urban Indian settings (Davey & Davey, 2014).

Adults reported **workplace distraction and musculoskeletal pain**, while the elderly struggled with **visual strain and slower cognitive processing**, consistent with findings from Bangalore's mobile usability eye-tracking study (arXiv, 2021).

ROTINDEXING

INTERNATIONAL ADVANCE JOURNAL OF ENGINEERING, SCIENCE AND MANAGEMENT (IAJESM)

July-December 2023, Submitted in July 2023, iajesm2014@gmail.com, ISSN -2393-8048

Multidisciplinary Indexed/Peer Reviewed Journal. SJIF Impact Factor 2023 = 6.753

Strengths: Multi-method approach with both quantitative and qualitative data. **Limitations:** Cross-sectional design limits causality; reliance on self-report; small sample size.

Conclusion

Android smartphone overuse in Amravati correlates with:

- Children/Adolescents: Attention deficits, sleep disruption, anxiety.
- Adults: Neck/shoulder pain, cognitive lapses, relationship strain.
- Elderly: Visual fatigue, slow cognitive performance.

Recommendations:

- Screen-time caps: ≤2 hrs/day for children/adolescents (AAP, WHO).
- Digital hygiene workshops for families and schools.
- Ergonomic awareness sessions for adults.
- Simplified digital interfaces and training for elderly users.
- Road safety campaigns addressin the property of the safety campaigns addressin to the safety campaigns add

References

- Kwon, M. et al. (2013). Development of the Smartphone Addiction Scale. *PLoS ONE*, 8(12).
- Gupta, N., & Krishnan, A. (2017). Behavioral addiction and Smartphone use among Indian adolescents. *Indian Journal of Public Health*, 61(3), 199–204.
- Sharma, R. et al. (2018). Mobile use in rural Maharashtra children. *International Journal of Contemporary Pediatrics*.
- Twenge, J. M. (2019). Smartphone use and mental health trends among adolescents. *Journal of Adolescence*.
- Davey, S., & Davey, A. (2014). Assessment of smartphone addiction in Indian adolescents. *International Journal of Preventive Medicine*.
- Panova, T., & Carbonell, X. (2018). Is smartphone addiction really an addiction? *Journal of Behavioral Addictions*.
- BMC Public Health. (2022). Sleep and cognitive effects of excessive smartphone use.
- Hindustan Times. (2023). Early phone use linked to hallucinations in teenagers.
- WHO. (2019). Guidelines on physical activity, sedentary behavior and screen time for children under 5 years.
- American Academy of Pediatrics. Media use guidelines for children and teens.
- Bangalore Eye-Tracking Study. Aging and mobile cognitive workload. *arXiv preprint* arXiv:2101.00792.
- Ristek Journal. Impact of smartphone use on students' motor skills.
- Kumar, A., & Singh, R. (2021). Musculoskeletal pain asside Xed with smartphone usage. *Indian Journal of Ergonomics*.

