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Abstract 
The current study analyses applications of differential geometry and curvature-based methods 

in machine learning and computer vision. This research aims to explain how geometric 

concepts such as Ricci curves, Foreman curves, and Olivier-Ritchie curves prove helpful in 

understanding and better modelling underlying structures in various data structures, such as 

graphs, images, biological networks, and hidden spaces. Inclusion of curvature optimizes 

message space, making node classification more accurate Curvature-based methods in image 

processing enabled more accurate detection of size, texture, and boundaries considering pixel 

networks in biological data analysis Understanding the geometry of the hidden space of 

generative models through curvature can help control their training and variation. Finally, 

curvature has also helped uncover the microstructures of community identification and causal 

analysis in network science. In conclusion, this study presents curvature as a general 

mathematical framework that can be effectively applied to a variety of data. This research not 

only enriches theoretical understanding but also provides new possibilities at the level of 

interpretation, performance and efficiency. 
Keywords: Differential Geometry, Curvature-Based Methods, Machine Learning, Computer 

Vision, Graph and Network Analysis 

Introduction 

Over the past decade, the machine learning and computer vision community has begun to adopt 

data structures arranged nonlinearly in graphs, multiple meshes, and networks rather than 

Euclidean flats Traditional algorithms are often based on the assumption of a flat (Euclidean) 

layout. Data from biological systems, relationships in social networks, or three-dimensional 

physical structures often contain geometric structures that are challenging to analyse with 

conventional linear techniques These situations require new methods that can optimize the 

learning process. 

Differential geometry is a branch of mathematics that uses differential calculus and algebra to 

study the properties of curves, surfaces, and multidimensional structures (manifolds) A central 

concept in this field is curvature, which measures how much a geometric surface or manifold 

deviates from a plane. For example, positive curvature of a surface compresses surrounding 

geometry (indicates adjacent geometry approaching), while negative curvature stretches it 

(geographies rotate apart), and zero curvature indicates perfect flatness and capture more 

efficiently 

In recent years, curvature-based methods have been successfully applied in various machine 

learning and network analysis tasks. In the field of graph and network analysis, researchers 

have used discrete variations of Ricci curves (such as Olivier Ricci curves) to improve the 

performance of graph-neural networks (GNNs) for identifying communities in networks 

Remove edges stepwise (negative curvature), other modifications based on curvature of each 

node Adding curvature regularizes to graph structures or weighting neighbours improves the 

quality of graph embedding and classification 

Curvature dominated approaches emerge in computer vision and image processing. Recent 

research has defined combinatorial Ricci curves for grayscale images and demonstrated their 

advantages in image segmentation and feature-based detail extraction and modelled various 

facial landmarks capable of recognizing patterns on spherical surfaces or other curves for 

enhanced visualization and inference properties They deserve it 

Curvature based methods have implications in other areas as well. In the case of deep 

generative models, the structure of their hidden space has been studied using principles of 

Riemannian geometry; In one study, deep generative models found an average curvature of 

zero by computing geodetic roads and parallel transport in known multifactor, suggesting these 
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hidden locations may be near the plane Some exaggerated graph-neural network models adopt 

continuous discrete curvature learning strategies for tree-like data structures Hierarchical 

relationships between remote nodes have been improved. Multi-scale differential geometry 

approaches in bioinformatics have successfully modelled interactions between cells in single-

cell RNA sequence data, and successfully classified curvature-based features of cell types in 

graph structures, cause-and-effect estimates found more uncertain, and estimation error using 

geometric Ricci flows reduced or reduced recognition of hidden patterns in complex biological 

and social systems 

The aim of the present article is to present all the above-mentioned advancements in a 

consolidated manner. This literature review covers major research published between 2017 and 

2024 in different areas of differential geometry curvature such as applications in graph neural 

networks, generative models, community search, image processing, biological network 

analysis, etc. Growing interest and discussion in physics-driven models and non-Euclidean data 

reflects, reference is given to these approaches for comprehensive understanding 

The results of these various studies clearly indicate that differential geometry and curvature 

continue to grow in relevance in machine learning and computer vision, but so far efforts to 

comprehensively review these curvature-focused innovations are limited improve and make it 

more meaningful. 

Background and definition 

Basic concepts of differential geometry 

Differential geometry is the branch of mathematics that studies the geometric properties of 

multidimensional structures such as curves, surfaces and manifolds. In simple terms, a 

manifold is a high-dimensional space that resembles a flat Euclidean space in every small 

region, but on a global scale its structure can be much more complex. In machine learning, data 

often lies on such non-Euclidean (non-planar) spaces for example, images of faces may lie on 

a high-dimensional facial manifold, or the graph of a social network acts like a discrete 

manifold. Differential geometry gives us the theoretical tools to understand the intrinsic 

properties of such spaces. It enables us to describe where a space is straight and where it is 

bent, i.e. helps us understand the underlying geometry of the data. 

A geodesic is the shortest path between two points on a manifold. Just as a straight line is the 

shortest path on a plane, a great circle arc connecting two points on the surface of a sphere is a 

geodesic. A geodesic on a manifold is the path that covers the shortest distance while following 

the intrinsic geometry. Geodesics are important in machine learning because if the data is 

located in a curved space, the actual "distance" or similarity between those points should be 

measured by the geodesic distance, not the simple Euclidean distance. For example, in a non-
linear data manifold (such as data propagation in a spiral shape) even if two points are separated 

by a straight-line distance, the geodesic path between them on the manifold may be shorter. 

Another aspect of the geodesic concept is parallel transport, which refers to how vector 

directions change when moving from one location on a manifold to another - a concept that 

was later used in machine learning to make message transmission on graph structures 

geometry-consistent. 

Curvature is a fundamental geometric property of manifolds that describes how much a space 

is locally bent or curved. Simply put: curvature measures how much a space deviates from 

being "flat". Positive curvature means the space is curved like a sphere or convex, while 

negative curvature means the space is concave like a saddle. The curvature of a flat Euclidean 

plane is considered to be zero. Curvature can have a large effect on data or networks - random 

walks emanating from two points in a space with positive curvature tend to get closer to each 

other (concentrate), while in a space with negative curvature they tend to spread away from 

each other faster. This means that positive curvature indicates local connectivity (neighbouring 

points/nodes are close to each other) Curvature is measured in many ways in differential 

geometry - such as Gaussian curvature as the product of curvature in two principal directions 

at each point of a surface, or Ricci curvature as the group of curvatures in different directions 
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in Riemannian geometry. In simple terms, Ricci curvature measures the local volume growth 

and expansion of geodesics around a point high positive Ricci curvature means that the 

surrounding region is relatively compressed (low volume) and geodesics bend towards each 

other, while negative Ricci curvature means that the region is relatively expanded and geodesic 

paths stretch in different directions. In data science terms, curvature indicates where our data 

space or graph structure is bent (complex) and where it is straight (simple) 

Curvature Criteria: Ricci, Forman, Olivier-Ricci 

Different units/criteria have been developed to measure curvature in different contexts. Ricci 

curvature, as defined in continuous geometry, is also defined in a consistent way for discrete 

structures such as graphs and networks. Below are definitions and interpretations of three key 

curvature parameters that are common in machine learning and network analysis: 

Ricci Curvature: It is a parameter derived from classical Ricci geometry that describes how 

the volume changes as one moves along geodesic lines in a manifold. In simple terms, if 

geodesic lines are drawn in different directions from a point, in case of positive Ricci curvature 

these lines get closer to each other (i.e. the distance decreases, the area/volume around it 

becomes smaller than expected), while in case of negative Ricci curvature the geodesic lines 

move away from each other (i.e. the space between them expands more than expected). In the 

context of graphs or networks, Ricci curvature is defined in discrete terms - it measures how 

"strong" or "weak" an edge or relationship is in the structure of the network. An edge with high 

Ricci curvature is usually one that tightly binds the neighbourhoods of the connected nodes 

(their neighbours are largely similar), while an edge with negative Ricci curvature is like a 

bridge connecting different communities or remote areas (where the neighbourhoods of the 

connected nodes are very different). In short, Ricci curvature provides a way to measure the 

stability of local connectivity in a network. 

Forman-Ricci curvature: This is a combinatorial discrete version of Ricci curvature, 

specifically designed for graph structures. It was proposed by mathematician Robin Forman, 

and is based on discrete relations equivalent to the relation between Ricci curvature and 

Laplacian operations in discrete geometry. In the context of graphs, Forman-Ricci curvature is 

defined for any two connected nodes (an edge) by taking the sum of the degrees of the nodes 

connected to that edge (how many other nodes are connected to it) and the number of small 

cycles (triangles, quadrilaterals, etc.) formed around that edge. To explain without going into 

formulas, 

Forman curvature measures the curvature of an edge based on: Forman-curvature 

measures the curvature of an edge of a graph based on how many other vertices the two nodes 

connected by that edge are connected to (i.e. what is their degree), and how many shared 
structures (such as triangles or quadrilaterals) exist between them. If the degree of two nodes 

connected by an edge is high, the curvature of that edge is considered low because it has a 

higher 'weight'. On the other hand, if there are many shared triangles or other cyclic structures 

between those two nodes, it indicates more positive curvature, as it indicates that the 

neighbourhood is more densely connected. Thus, Forman-Ricci curvature measures the local 

structural connectivity of a graph by a very simple calculation. One of its major advantages is 

that it is much faster and cheaper to calculate than other parameters such as Olivier-Ricci, since 

it only requires the local degree and the number of neighbouring triangles. In large-scale 

network analysis, where computational complexity is a significant challenge, convolution 

curvature has emerged as a practical tool. However, it is notable that in some network structures 

such as grid or mesh-like structures, this curvature often gives negative values, which can be 

understood in terms of the relatively loose connectivity of that structure. 

Olivier-Ricci curvature: This curvature measure is a new discrete form of Ricci curvature 

proposed by mathematician Yann Olivier in 2009, based on the optimal transportation theory. 

In continuous differential geometry, Olivier believed that if one looks at the neighbourhoods 

(spatial distributions) around two close points on a manifold, one can measure their geometric 

difference by the optimal transportation distance (also called the Wasserstein distance) between 

mailto:iajesm2014@gmail.com


International Advance Journal of Engineering, Science and Management (IAJESM)  
Multidisciplinary, Indexed, Double Blind, Open Access, Peer-Reviewed, Refereed-International Journal. 

SJIF Impact Factor = 7.938, July-December 2024, Submitted in December 2024, ISSN -2393-8048 

Volume-22, Issue-se            iajesm2014@gmail.com 74 

those neighbourhoods. According to this theory, if the Ricci curvature of a manifold is positive, 

random walks starting from two very close points will converge over time (i.e. their 

neighbourhoods will overlap significantly), while in the case of negative Ricci curvature, 

random walks starting from those points will converge in the context of the graph, Olivier-

Ricci curvature looks at the optimal transportation distance between the neighbours of two 

connected nodes (e.g. $u$ and $v$). If the neighbouring groups of $u$ and $v$ are quite similar 

(overlap), the Wasserstein distance between them will be low and the resulting Olivier-Ricci 

curvature will have a high (positive) value - indicating that the nodes are in the same 

community structure or have a strong connection between them. On the other hand, if the 

neighbours of two nodes are very different (e.g. they are from different communities), the 

distribution distance between them will be large, resulting in a low or negative value of Olivier-

Ricci curvature. In short, Olivier-Ricci curvature measures the neighbourhood similarity of two 

connected nodes in a graph. This criterion has become particularly popular in network science, 

as it captures the geometry of the graph from the perspective of overlapping neighbourhoods, 

providing a natural approach to the analysis of many social and biological network structures. 

Relevance of these concepts in machine learning and computer vision 

The above concepts of differential geometry and curvature parameters have become extremely 

relevant in modern machine learning and computer vision research. The main reason for this is 

that today many types of data are found in non-Euclidean structures - such as graphs, networks, 

tree-like data and shapes, etc. to which the methods of traditional plane geometry are not 

directly applicable. The principles of differential geometry open new doors to understanding 

and learning these complex structures. 

Graph-based learning (graph neural networks and network analysis): Curvature has gained 

popularity as an important tool for analysing data in graph structures (e.g., social networks, 

knowledge graphs, bioethical networks). In models such as graph neural networks (GNNs), 

Ricci curvature is used to measure the strength of the relationships between edges or nodes. 

For example, some GNN architectures optimize message propagation based on the Ricci 

curvature value of each edge by giving edges with higher positive curvature a higher weight in 

message propagation, the model prioritizes information coming from neighbours that have 

stronger local structure, while minimizing the influence of edges with negative curvature 

(which potentially connect two different communities). Thus, curvature-based weighting 

allows graph neural networks to learn in a more local geometry-consistent manner, resulting in 

better performance in tasks such as node classification or link prediction. 

Moreover, Olivier-Ricci curvature has proven to be a powerful indicator in shallow graph 

learning problems, such as community detection. Various researches have observed that edges 
in a graph that connect different communities often have very low or even negative curvature, 

while edges within a community (cluster) exhibit positive curvature because the 

neighbourhoods of nodes there are very similar. This difference can be used to remove edges 

from the graph that have negative Olivier-Ricci curvature, resulting in a naturally generated 

graph being broken down into separately connected components that correspond to real 

communities. Such curvature-based clustering has shown an edge over techniques such as 

traditional spectral clustering, especially in networks where there is a clear community 

structure. Similarly, recent studies have used lower Ricci curvature to rapidly measure the 

community importance of edges in large-scale networks. 

Computer vision and shape analysis: In computer vision, concepts of curvature are often 

used to understand the geometry of images and 3D models. For example, a 3D surface or point 

cloud can be considered as a manifold, and by estimating the curvature at each of its points, we 

can learn about the shape structure of the surface – such as where the surface is convex, where 

it is concave. This concept has been used in 3D shape analysis and computer graphics for a 

long time. Recently, the concept of discrete curvature has also entered image processing: a 

Gray-scale image can be viewed as a graph where each pixel is a node and there are edges 

between neighbouring pixels. By defining parameters such as the combinatorial Ricci curvature 
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on such a graph, researchers have developed new ways to detect edges in an image, recognize 

patterns, or filter out noise. In such techniques, the distribution of curvature in different parts 

of the image is obtained, which provides additional geometric information beyond what is 

provided by conventional filters. For example, a method proposed in 2023 extracted Ricci-like 

curvatures at each pixel-edge of an image and used these curvatures in place of the traditional 

Laplace operator to smooth/enhance Gray-scale images demonstrating how the tools of 

classical differential geometry can be applied to digital images as well. 

Other machine learning contexts: Geometric concepts are also part of an emerging trend in 

deep learning. For example, we view the latent space of generative models (such as variational 

autoencoders or generative adversarial networks) as a learned geometric surface or manifold. 

Some research has studied the curvature of these latent manifolds - and found that efficient 

generative models often learn a nearly flat (zero curvature) latent space, making interpolation 

or sampling easier. If excessive curvature is found somewhere in the learned latent space, it 

may point to a limitation of the model or a complex sub-structure of the data that the model 

could not capture properly. Thus, analysing curvature can help interpret and diagnose deep 

models. In addition, hyperbolic geometry (space with negative curvature) has also become 

popular in representation learning - especially for data that has a tree-like or hierarchical 

structure (e.g., family trees, folder structures, categories in knowledge graphs, etc.). Hyperbolic 

space has a high capacity for expansion - being low in curvature it is naturally suitable for 

embedding tree-like data. Many modern graph neural networks and embedding algorithms 

prefer learning in hyperbolic space as they are able to better understand the superstructures of 

the data. For example, a hyperbolic GNN learns constant Ricci curvature to determine message 

transmission distances/weights, allowing long-range dependencies to be learned efficiently. 

In short, differential geometry and curvature parameters are playing a vital role in solving 

challenges in machine learning and computer vision where we need to understand the intrinsic 

geometry of data. These concepts have provided a way to measure local texture and global 

shape in graph structures, giving models deeper structural information. As a result, whether it 

is social network analysis via graph neural networks, community detection, link prediction in 

biomolecular structures, 3D shape recognition, or studying latent intervals of generative models 

everywhere curvature-based approaches are making modelling more natural, interpretable, and 

effective. This ‘Background and Definition’ section provides a theoretical foundation for 

further study, where we will see how researchers are applying these principles in practice. 

Review of Related Literature 

Use of curvature in graph neural networks (GNNs) 

In the field of graph neural networks (GNNs), many studies have explored the integration of 
curvature information to leverage the geometric structure of graphs for improved learning 

performance. A notable work by Li et al. (2021) proposed the Curvilinear Graph Neural 

Network (CGNN), which uses discrete Ricci curvature to measure the structural connectivity 

strength between neighbouring nodes. In this approach, each neighbouring node is assigned a 

weight based on its Ricci curvature value, allowing GNNs to better adapt to local structural 

variations. This curvature-aware weighting mechanism was found to be able to significantly 

improve node classification performance (Li et al., 2021). 

Based on this concept, Wu et al. (2021) presented the Ricci curvature-based graph 

convolutional network (RCGCN), in which the graph is considered as a discrete manifold. In 

RCGCN, the Ricci curvature is used to determine the relative importance of neighbouring 

nodes, generating a curvature-based neighbourhood score that more accurately reflects the 

relationship between the central node and its neighbours. This approach resulted in better 

performance in semi-supervised learning tasks compared to traditional GCN (Wu et al., 2021). 

Further progress was made with κHGCN, a hyperbolic GNN model developed by Yang et al. 

(2023), which learns both continuous and discrete curvature to optimize information 

propagation in tree-like graph structures. This hybrid approach significantly improved 

message-passing capabilities in long-range hierarchical networks, promoting holistic graph 
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representation learning (Yang et al., 2023). 

In practical situations, curvature-based GNNs have also been adopted in biomolecular structure 

analysis. For example, Wu et al. (2023) proposed a curvature-based adaptive GNN (CurvAGN) 

to model protein-ligand interactions. CurvAGN integrates a multi-scale curvature block and an 

adaptive attention mechanism to encode advanced geometric features such as distances, angles, 

and curvatures into node and edge features. This method showed significant improvements in 

predicting protein-ligand binding affinity (Wu et al., 2023). 

Similarly, Shen et al. (2024) presented curvature-augmented GCN (CGCN), which directly 

incorporates Olivier-Ricci curvature as a weighting function during the message-transmission 

stage. The CGCN model achieved the highest prediction accuracy on 13 out of 14 real-world 

biomolecular datasets, highlighting the utility of incorporating structural curvature cues into 

graph-based learning (Shen et al., 2024). 

Curvature has also been used as a regularization technique in graph representation learning. 

Pei et al. (2020) introduced a curvature-based regularize into the graph embedding process to 

maintain a flat embedding space (i.e., close to zero curvature). Experimental results of five 

standard graph embedding methods on several benchmark datasets demonstrated that curvature 

regularization consistently improved node classification and link prediction performance (Pei 

et al., 2020). 

Image Processing and Computer Vision 

Curvature-based techniques have also found significant applications in the fields of image 

processing and computer vision. For example, Saukan et al. (2023) proposed a combinatorial 

Ricci curvature and an associated Laplacian operator, specifically designed for grayscale 

images. This novel framework enables the measurement of curvature and geometric structures 

directly on the digital pixel grid, providing a new approach to the analysis of image geometry 

(Saukan et al., 2023). 

Similarly, Cascone et al. (2022) constructed a graph structure using key facial landmark points 

and calculated the Olivier-Ricci curvature in this graph. The resulting curvature-based features 

were then inserted into an XGBoost regression model to estimate head pose from a single face 

image. Their curvature-driven method demonstrated competitive, and in some cases better, 

performance than state-of-the-art techniques on standard datasets such as BIWI and 

AFLW2000, especially in the area of head pose estimation (Cascone et al., 2022). 

Curvature-based methods in biological data 

Curvature and differential geometry have also played an important role in the analysis of 

biological and medical datasets. In the context of shape analysis and biomedical imaging, Lui 

et al. (2018) proposed a novel approach called geodesic differential analysis for classification 
tasks on non-Euclidean structures. By generalizing traditional linear analysis to Riemannian 

manifolds and using geodesic subspaces, they effectively classified manifold-valued data such 

as 3D brain structures into different patient groups with improved accuracy (Lui et al., 2018). 

In molecular biology and bioinformatics, Nguyen and Wei (2019) introduced a framework 

called differential geometry-based geometric learning (DG-GL), which converts complex 

three-dimensional molecular structures into low-dimensional differential representations. 

These representations are used to extract multi-scale curvature-based features. When combined 

with machine learning models, these features provided high prediction accuracy for properties 

such as drug-binding affinity, molecular toxicity, and solvation energy in large molecular 

datasets outperforming traditional methods (Nguyen and Wei, 2019). 

Extending this approach further, Feng et al. (2023) developed a multi-scale differential 

geometry (MDG) strategy for analysing single-cell RNA-sequence data. They hypothesized 

that the position of each cell in the high-dimensional gene expression space lies on a low-

dimensional manifold, which can be modelled using a generative manifold framework. Ricci 

curvature-based features were extracted from cellular interaction networks at multiple scales, 

enabling effective classification of cell types (Feng et al., 2023). 

Additionally, recent graph-based models developed for biomolecular networks, such as Wu et 

mailto:iajesm2014@gmail.com


International Advance Journal of Engineering, Science and Management (IAJESM)  
Multidisciplinary, Indexed, Double Blind, Open Access, Peer-Reviewed, Refereed-International Journal. 

SJIF Impact Factor = 7.938, July-December 2024, Submitted in December 2024, ISSN -2393-8048 

Volume-22, Issue-se            iajesm2014@gmail.com 77 

al. (2023) and Shen et al. (2024), have incorporated Ricci curvature directly into message-

transmission frameworks. These models have achieved state-of-the-art performance in 

predicting protein-ligand and protein-protein interactions by taking advantage of curvature-

enhanced structural information. 

Differential geometry in generative models 

In the context of deep generative models, researchers have used tools from differential 

geometry to understand the geometry of the latent spaces learned by these models. Shao et al. 

(2017) conducted a foundational study on the Riemannian geometric properties of data 

manifolds generated by deep generative networks. They developed efficient algorithms for 

computing geodesic curves and parallel transport on the learned manifolds. Despite the fact 

that these manifolds are highly nonlinear, the study showed that their overall curvature is nearly 

zero (Shao et al., 2017). 

This observation implies that linear interpolations in the latent space of generative models such 

as variational autoencoders (VAEs) and generative adversarial networks (GANs) 

approximately resemble true geodesic paths on the underlying data manifold. In other words, 

the latent space geometry learned by these models is approximately flat. This insight establishes 

an important foundation for understanding the high-dimensional, non-Euclidean spaces 

constructed by deep generative architectures and facilitates their further exploration using 

geometric methods. 

Network analysis and community detection 

In the field of network science, curvature-based methods have shown promising results for 

tasks such as community detection and other structural analyses. Sia et al. (2019) presented a 

new algorithm for community detection in complex networks based on Olivier-Ricci curvature. 

Their approach involves repeatedly removing edges with negative Ricci curvature, allowing 

specific communities to emerge naturally from the underlying structure. This curvature-driven 

technique outperformed or equalled traditional community detection algorithms in various 

synthetic and real-world networks and proved effective in revealing hierarchical community 

structures (Sia et al., 2019). 

Based on these advancements, Park and Lee (2024) proposed a new discrete curvature metric 

called Lower Ricci Curvature (LRC), which is specifically designed to enhance the efficiency 

of community detection in large-scale graphs. LRC provides a closed-form curvature 

computation that is computationally much more efficient than traditional Olivier-Ricci 

curvature. When integrated during the preprocessing step, LRC improved the speed and 

accuracy of popular community detection algorithms on large-scale networks such as the 

NCAA football, DBLP, and Amazon co-purchase datasets (Park and Lee, 2024). 
Beyond community detection, Farzam et al. (2024) explored the relationship between curvature 

in graph structures and the reliability of causal inference. They demonstrated theoretically that 

the Ricci curvature of a graph is associated with the difficulty of accurately estimating causal 

effects. Specifically, regions of the network exhibiting negative curvature were found to be 

more prone to errors in causal inference, while regions with positive curvature yielded more 

reliable estimates. To address this problem, they used a geometric Ricci flow technique that 

“flattens” the network geometry, thereby reducing inference errors (Farzam et al., 2024). 

Curvature-based insights have also begun to emerge in the theoretical understanding of deep 

learning. Baptista et al. (2024) proposed that layer-wise geometric transformations within a 

trained deep neural network resemble Hamiltonian Ricci flow. Their extensive experiments 

showed that models that exhibit more robust global Ricci flow-like behaviour during training 

perform better in classification tasks. These findings suggest that differential geometric tools 

such as curvature can contribute to deeper interpretability and generalization in machine 

learning, potentially guiding the development of next-generation AI models that are both robust 

and theoretically grounded. 
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Discussion and synthesis 

Curvature-based methods in graphs, images, and biological data 

Differential geometric concepts of curvature have found various applications in graph learning, 

image analysis, and biological data interpretation. Graph-neural networks (GNNs) use discrete 

curvature metrics such as Olivier Ricci and Foreman curvature to measure the “shape” of graph 

connections. These measures enrich graph representations by reflecting the density or 

relaxation of nodes in local neighbourhoods. For example, edges with high positive curvature 

often represent well-connected nodes, while negative curvature reveals bridge-like connections 

connecting different parts of the graph Incorporating such curvature information into GNN 

architectures (e.g., as additional edge weights or features) allowed models to capture structural 

patterns beyond standard messaging Curvature methods in image processing take a more 

continuous form: images or shapes are treated as geometric surfaces, curvature-driven 

processes are used to enhance analysis Curvature flows (like average curvature or Ricci flow) 

are applied to smoothed images or developed segmentation boundaries are This approach has 

improved tasks like edge detection and segmentation by maintaining consistent object 

boundaries the geometric notion of curvature helps distinguish true contours from noise, as 

meaningful edges align with curvature vertices Discrete curvature in that graph provides high-

level features, such as pose estimation and shape recognition functions are displayed In the 

field of biological data analysis, many problems can be represented as networks (e.g. protein 

interaction networks, neural connections, gene regulation networks). In brain connectivity 

maps, highly curved (positively curved) regions connected by subnetworks may be densely 

integrated functional communities, whereas negatively curved connections may indicate 

important inter-modular connections whose disruption may be a hallmark of disease. Similarly, 

curvature measurements in cellular and molecular networks have been used to identify strong 

paths or fragile points in network topology, informing our understanding of complex biological 

systems A unifying theme in all these fields is that curvature provides a language to describe 

data geometry: Curvature-based methods reveal multi-scale connections and shape information 

Key Theoretical Contributions: Discrete Curvature, Ricci Flow, and Geometric Learning 

The rise of curvature-based techniques in machine learning and vision is based on several key 

theoretical advances. Most prominent among these is the discrete curvature model: researchers 

have successfully extended the classical curvature definition from smooth manifolds to graphs 

and other discrete structures For example, Olivier Richie curvature graphs generalize Ricci 

curvature by optimal transport of node distributions The theoretical path provides Foreman–

Ritchie curvature provides an alternative valence formulation that simplifies edge weight and 

node fraction aggregate curvature calculations in a manner inspired by Riemannian geometry 
The contribution is an explanation of graph processes through Ricci flows. In continuous 

geometry, the metric of a manifold is repeatedly adjusted in proportion to its curvature, often 

leading to a more uniform curvature distribution A unifying explanation was provided  in 

particular, it was shown that the tendency of GNNs to be irrationally homogeneous (over-

levelling) is associated with regions of strong positive curvature, while failure to spread 

information over long distances (over-squashing) is curvature-aware Measures (such as 

curvature-directed edge reloading) have been developed that theoretically reduce both 

problems simultaneously Beyond these discrete analogies, learning geometric representations 

has become a broader theoretical issue. This involves incorporating data into curved spaces or 

incorporating geometric invariants into learning algorithms. Examples include neural network 

models operating in Riemannian manifold or constant curvature spaces (hyper curvilinear (or 

hyper spherical) spaces, which use curvature to better represent certain data structures (such as 

hierarchies or cycles) Theoretical work in this area has shown that curvature to act as an 

inductive bias Can: for example, negative curvature (hyperbolic geometry) inherently represent 

tree-like hierarchies with low distortion, and some graphs benefit from being embedded in such 

spaces Thus, using known curvature features in the architecture of models – for example, 

feeding edge curvature values to messaging functions Judged to enrich capacity In summary, 

mailto:iajesm2014@gmail.com


International Advance Journal of Engineering, Science and Management (IAJESM)  
Multidisciplinary, Indexed, Double Blind, Open Access, Peer-Reviewed, Refereed-International Journal. 

SJIF Impact Factor = 7.938, July-December 2024, Submitted in December 2024, ISSN -2393-8048 

Volume-22, Issue-se            iajesm2014@gmail.com 79 

these contributions (differential curvature definition, graph Ritchie flow analogy, and 

curvature-informed representation learning) established a foundation where differential 

geometry concepts inform core machine learning theory to analyse and design algorithms with 

deeper understanding of shape, connectivity, and space in complex data 

Practical Outcomes: Performance, Scalability, and Interpretability 

The inclusion of curvature-based methods in practical applications has brought new ideas of 

significant performance improvement, improved interpretability, and scalability in terms of 

performance, many studies report that models augmented with curvature information 

outperform their traditional counterparts. By integrating curvature into the graph learning tasks, 

the GNN variants achieved greater accuracy and robustness. For example, by incorporating 

Olivier-Ritchie curvature into the message transmission process (reweighting graph streams or 

as additional feature channels) the network can adapt its aggregation according to local 

geometric context This has led to state-of-the-art results for models ranging from social 

network analysis to biochemical interaction prediction. A concrete result in the biochemical 

context is that curvature-enhanced GNN was able to predict protein-ligand binding affinity 

more accurately than standard GNN, because of its ability to capture geometric nuances of 

molecular traces (such as pocket rings) through curvature features in the domain of computer 

vision Curvature-regular methods improved output quality in tasks such as segmentation, shape 

reconstruction, etc. By adding curvature-dependent steps to loss functions or using curvature-

flow algorithms, image-segmentation models produce more smooth and accurate object 

boundaries for medical imaging challenges Having higher overlap scores and visual accuracy 

These performance gains show that curvature is not just a theoretical nuance but a practical 

indicator of data structure that models can use to make better predictions 

Scalability, however, is a consideration when deploying curvature-based methods. Calculating 

curvature can be computationally intensive: for example, Olivier-Ricchi curvature solves 

optimal transport problems between nodes, which can be a bottleneck for very large graphs in 

practice researchers use approximations when scaling to grids with millions of edges or more 

optimal curvature measures (e.g.). Algorithmic advances have also addressed this by switching 

to Foreman curvature, which is easier to compute), such as incremental or localized curvature 

calculations that only update curvature values in affected areas of the graph during training, 

not globally recalculate from scratch Solving partial differential equations in voxels is 

computationally heavy yet thanks to modern hardware (GPU acceleration) and optimized 

numerical methods these techniques have been efficient enough for practical use, at least in 

offline or high-precision tasks (e.g., refining 3D medical scan segmentation overnight). 

Providing high-level structural features can reduce overall complexity in the sense that reduces 
the need for very deep mesh or detailed feature engineering, when applied wisely, curvature 

can improve performance-complexity ratios, albeit at the expense of preprocessing steps or 

additional computational kernels 

In terms of interpretability, curvature-based methods offer intuitive knowledge of the data and 

model behaviour. Like many learned features of deep networks, curvature has obvious 

meaning: it has been used in fields like neuroscience and biology to make sense of network 

data describing how space bends or how connections deviate from flat norms A natural 

explanation for community structure aligned with neural pathways that decline with age or 

disease can be achieved when curvature is included in model decisions and improved structural 

properties of data can be traced Region to be observed Couples with, thereby helping to validate 

that the model's improvements stem from reliable patterns rather than spurious correlations 

Moreover, analysing models through the lens of curvature can help diagnose problems: are) 

generate In summary, practical consequences of curvature-based approaches are multifaceted 

Assume manageable-computational strategies, and add a layer of interpretability, linking model 

behaviour to explicit geometric intuition 

Current gaps and future opportunities 

Although curvature-induced methods have shown considerable promise, there are still open 
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challenges and fertile avenues for future research. One major difference is in the fragmentation 

of curvature definitions and approaches. There is no unified understanding in the field on when 

to use a particular notion of curvature and how different curvature measures should 

complement each other e.g., Olivier-Ritchie and Foreman curvature each capture slightly 

different aspects of lattice geometry We were. Future work should aim to develop a generalized 

curvature framework that incorporates these definitions and can be tuned or learned from the 

data potentially generating a data-driven curvature measure optimized for predictive work. This 

includes proving convergence properties (under what conditions does curvature in a sequence 

of graphs approximate boundary space curvature?) and understanding how curvature 

restrictions affect the learning ability or generalization limits of models 

Another limitation is computational efficiency and integration. As discussed, curvature 

calculations can be demanding. An open opportunity is to design algorithms that estimate 

curvature on the fly within the training loop, rather than as a separate preprocessing step. If 

curvature can be computed differently, one can also imagine neural networks that eventually 

learn to shape the geometry of data representations as part of internal training  adjust connection 

or insert curvature reduction Advances in this direction will make curvature-based techniques 

more seamless within existing machine learning pipelines Scaling whole-social-media 

networks or high-resolution video data) will require clever approximations Sparse sampling of 

nodes for curves, multi-scale approaches that compute coarse-grained curves in dense 

renderings, or use distributed computing, these approximations with possible strategies Making 

sure they still retain the geometric cue is an important aspect of this challenge. 

There are also domain-specific opportunities that remain relatively undiscovered. While 

curvature has been used in segmentation and bounding in computer vision, it can be further 

exploited in areas like 3D vision imaging e.g., depth models that generate or manipulate 3D 

shapes (point clouds, grids) can use curvature to maintain realistic surface properties It can help 

to respect physical practicality, where curvature of surfaces affects aesthetics and function 

Emerging structures like hypergraphs or time grids in graph learning raise the question of how 

to define and use curvature in those contexts (capturing higher order interaction geometry) or 

extend to dynamic grids occurs), but comprehensive methods have not yet been developed 

Curvature-based descriptors can be applied to new data methods in biological medicine fields 

Curvature indicates cellular developmental trajectory or disease progression Each of these 

areas presents unique structures where curvature can capture hidden organizing principles 

Finally, an important future direction is to combine curvature with other geometric and 

topological tools for an even richer understanding of the data. Curvature is a descriptor of 

shape; Among other topological invariants (such as holes and connection captured by algebraic 
topology) or global geometric properties (such as diameter or symmetry) an exciting research 

frontier creates hybrid models that leverage curvature alongside topology to capture 

complementary aspects). Complementary aspects can take the invariants take (and vice versa) 

Also, finding learnable curves where a model can adjust what "curve" means in the context of 

performance optimization bridges the gap between manually generated geometric features and 

automatic feature learning 

Conclusion 

This study concludes that differential geometry and Vegeta-based machine learning have 

proven to be extremely effective in understanding and better capturing the individual nature of 

data in various fields such as computer vision, graph neural networks, image clusters, 

biological data analysis, generative tools, and network analysis. Modifying the Ricci, Forman, 

and Olivier-Ricci valences in the algorithm has improved the comparability, interpretability, 

and efficiency of models, as well as making it possible to understand complex classes in depth. 

This research shows that Vegeta serves as a general platform formula that registers various data 

domains and provides direction in the form of analysis. Along with this, the field also sets the 

standard for new directions in the future, such as the solid structure of Vegeta, its extension to 

hypergraphs, its role in time-dependent categories, development of stable AI consistency. 
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Overall, curvature-based approaches are not only theoretically rich, but they also add immense 

depth, clarity, and philosophy to modern data science. 

References 

Baptista, A., Barp, A., Chakravarti, T., Harbron, C., McArthur, B. D., & Banerjee, C. R. S. 

(2024). Deep learning as Ricci flow. Scientific Reports, 14(1), 23383. 

Cascon, L., Distasi, R., & Nappi, M. (2022). Olivier-Ricci curvature for head pose estimation 

from a single image. arXiv preprint arXiv:2204.13006. 

Farzam, A., Tannenbaum, A., & Sapiro, G. (2024). From geometry to causality: Ricci curvature 

and the reliability of causal inference on networks. In Proceedings of the 41st International 

Conference on Machine Learning (ICML) (pp. 13086–13108). PMLR. 

Feng, H., Cottrell, S., Hozumi, Y., & Wei, G.-W. (2023). Multilevel differential geometry 

learning of networks with applications to single-cell RNA sequencing data. arXiv preprint 

arXiv:2312.10261. 

Li, H., Cao, J., Zhu, J., Liu, Y., Zhu, Q., & Wu, G. (2022). Curvilinear graph neural networks. 

Informatics, 592, 50–66. 

Louis, M., Charlier, B., & Dirlemann, S. (2018). Geodesic discriminant analysis for 

multiplicative-valued data. In Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition Workshops (pp. 332–340). 

Nguyen, D. D., & Wei, G.-W. (2019). DG-GL: Differential geometry-based geometric learning 

of molecular datasets. International Journal for Numerical Methods in Biomedical Engineering, 

35(3), p. 3179. 

Park, Y. J., & Lee, D. (2024). Low Ricci curvature for efficient community detection. arXiv 

preprint arXiv:2401.10124. 

Pei, H., Wei, B., Chang, K. C.-C., Zhang, C., & Yang, B. (2020). Curvature regulation to 

prevent distortion in graph embeddings. In Advances in Neural Information Processing 

Systems, 33 (pp. 18792–18803). 

Sockan, E., Appleboim, E., Wolanski, G., & Zeevi, Y. Y. (2009). Combinatorial Ricci curvature 

and Laplacian for image processing. In Proceedings of the 2nd International Conference on 

Image and Signal Processing (CISP) (vol. 2, pp. 992–997). 

Shao, H., Kumar, A., & Fletcher, P. T. (2017). Riemannian geometry of deep generative models. 

arXiv preprint arXiv:1711.08014. 

Shen, C., Ding, P., Wei, J., Bi, J., Luo, J., & Xia, K. (2024). Curvature-enhanced graph 

convolution networks for biomolecular interaction prediction. Journal of Computational and 

Structural Biotechnology, 23, 1016–1025. 

Sia, J., Jonckheere, E., & Bogdan, P. (2019). Olivier-Ricci curvature-based method for 
community detection in complex networks. Scientific Reports, 9(1), 9800. 

Wu, J., Chen, H., Cheng, M., and Xiong, H. (2023). CurveAGN: curvature-based adaptive 

graph neural networks for predicting protein-ligand binding affinity. BMC Bioinformatics, 

24(1), 378. 

Wu, W., Hu, G., and Yu, F. (2021). Ricci curvature-based semi-supervised learning on an 

attributed network. Entropy, 23(3), 292. 

Yang, M., Zhou, M., Pan, L., and Qing, I. (2023). κHGCN: tree-likeness modelling via 

continuous and discrete curvature learning. In Proceedings of the 29th ACM SIGKDD 

conference on Knowledge exploration and data mining (pp. 2965-2977). 

 

mailto:iajesm2014@gmail.com

