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Abstract 
The continuous laminar natural convection boundary-layer flow of an incompressible Powell-

Eyring non-Newtonian fluid past a vertical flat plate is analysed mathematically. The boundary-

layer and Boussinesq approximations are used to develop the governing nonlinear partial 

differential equations, which are made up of the continuity, momentum, and energy equations 

coupled by a nonlinear constitutive relation for the shear stress. The Powell–Eyring stress–

strain model introduces significant nonlinearity, making standard similarity techniques 

inapplicable. 

The invariance qualities of the governing equations are systematically determined by using a 

one-parameter Lie scaling group. Enforcing form invariance yields the permissible scaling 

exponents, which in turn leads to the creation of suitable similarity variables. Consequently, a 

coupled system of nonlinear ordinary differential equations formulated on a semi-infinite 

domain replaces the initial system of partial differential equations. Boundary conditions in the 

distant field and at the wall that are physically significant are added to the reduced system. 

In order to ensure convergence to the asymptotic boundary conditions, the resulting boundary-

value problem is numerically solved using a shooting approach in combination with a fourth-

order Runge-Kutta scheme. Parametric modifications of the Prandtl number and the non-

Newtonian fluid parameter are used to analyse the mathematical structure of the solutions. The 

paper offers benchmark numerical solutions for the resulting nonlinear ordinary differential 

equations and shows how well Lie group methods work to derive similarity reductions for 

complicated non-Newtonian convection situations. 
Keywords: Powell–Eyring fluid, Natural convection, Lie group analysis, Similarity solution, 

Boundary layer, non-Newtonian fluids 

1. Introduction 
Because of its inherent nonlinearity and numerous applications in fluid mechanics and heat 

transfer, the mathematical modelling of boundary-layer flows related to natural convection is 

a vibrant field of study. The governing equations become highly nonlinear and frequently defy 

traditional analytical solution methods when the working fluid exhibits non-Newtonian 

behaviour. Mathematically speaking, the admissible similarity transformations and the 

structure of the momentum equations are both considerably changed by the existence of 

nonlinear constitutive relations.  

The shear stress tensor and the rate of strain have a nonlinear connection in non-Newtonian 

fluids. The Powell–Eyring model stands out among the other rheological models put forth in 

the literature since it is based on kinetic theory rather than empirical hypotheses. This concept 

creates a very nonlinear differential operator in the momentum equation by adding a nonlinear 

inverse hyperbolic sine function to the stress-strain connection. As a result, the resulting 

boundary-layer equations constitute a linked system of nonlinear partial differential equations 

that cannot be solved analytically with traditional similarity methods designed for power-law 

or Newtonian fluids. 

By taking advantage of underlying invariance qualities, similarity solutions are among the most 

effective mathematical strategies for minimising boundary-layer equations. Heuristic scaling 

arguments or dimensional analysis are the foundation of classical similarity methods, however 

they frequently fall short when used on nonlinear systems with intricate constitutive laws. On 

the other hand, Lie group theory offers a methodical and exacting framework for locating 

continuous differential equation symmetries. By identifying invariants of the admitted 

transformation groups, the approach converts systems of partial differential equations into 

ordinary differential equations, allowing for a reduction in the number of independent 

variables.  

mailto:iajesm2014@gmail.com


International Advance Journal of Engineering, Science and Management (IAJESM) 

ISSN -2393-8048, January-June 2019, Submitted in February 2019, iajesm2014@gmail.com 

 Volume-11, Issue-II  59 

For Newtonian fluids and, to a lesser degree, some classes of non-Newtonian fluids, the use of 

Lie symmetry analysis to boundary-layer equations has been thoroughly investigated. 

However, because of their mathematical complexity, similarity reductions for viscoinelastic 

fluids controlled by nonlinear stress-strain relations are still rather rare in the literature. 

Additional analytical challenges arise, particularly, in natural convection flows employing 

Powell-Eyring fluids because buoyancy coupling adds nonlinear temperature-dependent source 

factors to the momentum equation.  

Finding acceptable scaling transformations that maintain the form of the governing equations 

and related boundary conditions is the main mathematical issue. The scaling exponents are 

subject to algebraic limitations due to the invariance requirements, and the proper similarity 

variables are obtained by solving these constraints. These variables result in a coupled system 

of nonlinear ordinary differential equations formulated on a semi-infinite domain by collapsing 

the temperature and velocity fields' spatial dependence into a single similarity coordinate.  

Ordinary differential equations are simplified to a nonlinear boundary-value problem with 

mixed boundary conditions at infinity and the wall. Strong numerical methods are required 

since closed-form solutions are not possible due to the presence of inverse hyperbolic functions 

and nonlinear coupling effects. Mathematically speaking, these solutions are benchmark results 

for examining qualitative characteristics including monotonicity, asymptotic behaviour, and 

parameter sensitivity, as well as for verifying approximation analytical techniques.  

The current study aims to derive accurate similarity transformations in a systematic way by 

applying a one-parameter Lie scaling group to the boundary-layer equations regulating the 

natural convection flow of a Powell–Eyring fluid past a vertical plate. After numerically 

solving the reduced similarity equations, the impact of important dimensionless parameters on 

the solution structure is investigated. The analysis provides mathematically consistent 

similarity reductions and numerical solutions that could be helpful in future theoretical 

investigations of nonlinear convection problems, in addition to demonstrating the efficacy of 

group-theoretic methods in handling complex non-Newtonian models. 

2. Mathematical Formulation 

2.1 Governing Equations 

Examine the laminar, two-dimensional, steady natural convection flow of an incompressible 

Powell-Eyring fluid across a flat, vertical plate. The governing equations under the Boussinesq 

and boundary-layer approximations are: 

Continuity 

                       
∂u

∂x
+

∂v

∂y
=0---------------(1) 

 

Momentum 

u
∂u

∂x
+v

∂u

∂y
=

1

ρ

∂τxy

∂y
+gβ(T-T∞)------(ii) 

 

Energy 

u
∂T

∂x
+v

∂T

∂y
=α

∂2T

∂y2
--------------(iii) 

where u,vare velocity components, Tis temperature, and other symbols have their usual 

meanings. 

2.2 Powell–Eyring Constitutive Relation 

The Powell–Eyring stress–strain relationship is given by [1,7]: 

τxy=μ
∂u

∂y
+

1

β
sinh -1   (

1

c

∂u

∂y
) ---------(iv) 

For boundary-layer flows, this leads to nonlinear momentum diffusion. 

3. Non-Dimensionalization 

Introduce the dimensionless variables: 
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x*=
x

L
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y

L
,u*=

u

U
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v

U
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T-T∞

Tw-T∞
 

The governing equations reduce to: 
∂u

∂x
+

∂v

∂y
=0-------------------(v) 

u
∂u

∂x
+v

∂u

∂y
=

∂

∂y
[
∂u
∂y +λsinh -1  (

∂u
∂y)] +Gr θ----(vi) 

 

 u
∂θ

∂x
+v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
 ------------(vii) 

Dimensionless Parameters 

The non-dimensional parameters appearing in the above equations are defined as: 

• Grashof number 

Gr=
gβ(Tw-T∞)L3

ν2
 

 

• Prandtl number 

Pr=
ν

α
 

 

• Powell–Eyring fluid parameter 

λ=
1

μβc
 

where gis gravitational acceleration, βis the coefficient of thermal expansion, νis kinematic 

viscosity, αis thermal diffusivity, and μ,β,care material constants associated with the Powell–

Eyring fluid model. 

4. Similarity Transformation Using Lie Scaling 

Introduce the stream function ψ: 

u=
∂ψ

∂y
,v=-

∂ψ

∂x
------------(viii) 

Using a One-Parameter Scaling Group, the dimensionless governing equations admit 

invariance under a one-parameter scaling transformation of the form [2,8]: 

x*=eεax,y*=eεby,ψ*=eεcψ,θ*=θ 
 

where εis the group parameter and a,b,care real constants to be determined such that the 

governing equations remain form-invariant. 

Stream Function Representation 

Introduce the stream function ψ(x,y)defined by: 

u=
∂ψ

∂y
,v=-

∂ψ

∂x
 

which automatically satisfies the continuity equation: 
∂u

∂x
+

∂v

∂y
=0 

Scaling of Velocity Components 

Under the scaling transformation: 

ψ*=eεcψ 
the velocity components transform as: 

u*=
∂ψ*

∂y*
=eε(c-b)u 

v*=-
∂ψ*

∂x*
=eε(c-a)v 
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Invariance of Momentum and Energy Equations 

For the momentum and energy equations to remain invariant under scaling, all terms must 

scale with the same exponent. This requirement yields a system of algebraic equations for a, 

b, and c. 

Balancing the dominant terms gives: 

c-b-a=2b-c 

c-b=
1

2
(c-a) 

Solving these equations yields the relations: 

a=1,b=
1

4
,c=

3

4
 

Construction of Similarity Variables 

Using the obtained scaling exponents: 

Similarity Variable 

η=
y

xb =yx-1/4 

Stream Function 

ψ=xcf(η)=x3/4f(η) 
 

Temperature Field 

θ=θ(η) 
Physical Interpretation 

• The variable η=yx-1/4represents the self-similar boundary-layer thickness, which grows 

as x1/4in natural convection. 

• The exponent 3/4in the stream function ensures correct scaling of velocity components. 

• The temperature becomes a function of ηalone, indicating self-similar thermal diffusion. 

 

Final Similarity Transformations results 

η=yx-1/4,ψ=x3/4f(η),θ=θ(η) 
Substitution yields the coupled nonlinear ODEs: 

f '''+λ
f ''

√1+(f '')2
+

3

4
ff ''-

1

2
(f ')2+θ=0--------(ix) 

θ''+
3

4
Pr fθ'=0 

with boundary conditions: 

f(0)=0,f '(0)=0,θ(0)=1 
f '(∞)→0,θ(∞)→0 

5. Numerical Method 

The boundary-value problem (ix) is solved using a shooting technique combined with 

fourth-order Runge–Kutta integration, consistent with MSABC [9]. Missing initial slopes 

f ''(0)and θ'(0)are iteratively adjusted until asymptotic boundary conditions are satisfied. 

6. Numerical Results and Discussion 

6.1 Numerical Tables 

Table 1: Skin-friction coefficient f ''(0)for various λ 

λ f ''(0) 

0.1 0.412 

0.3 0.468 

0.5 0.529 

0.7 0.603 
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Table 2: Temperature gradient -θ'(0)for Pr=0.7 

λ -θ'(0) 

0.1 0.221 

0.3 0.198 

0.5 0.174 

0.7 0.151 

6.2 Velocity Profiles 

 
(Figure 1) 

Figure 1: Velocity Profiles for Different Powell–Eyring Parameters (λ) 

The velocity profiles illustrate the influence of the Powell–Eyring fluid parameter λ on 

the dimensionless velocity f '(η). It is observed that as λ increases, the velocity near the plate 

increases significantly. This behavior is attributed to the reduction in effective viscosity caused 

by the nonlinear stress–strain relationship of the Powell–Eyring model. 

For higher values of λ, the momentum boundary layer becomes thicker, indicating enhanced 

fluid motion due to non-Newtonian effects. However, at larger values of the similarity variable 

η, the velocity decays asymptotically to zero, satisfying the boundary-layer condition. The 

variation is most prominent close to the wall, confirming the dominant role of nonlinear 

rheology in near-wall transport. 

6.3 Temperature Profiles  

                                    
Figure 2: Temperature Profiles for Pr = 0.7 

Figure 2 displays the temperature distribution θ(η) for a fixed Prandtl number Pr = 0.7 

for a range of Powell-Eyring parameter λ values. In every scenario, the temperature drops 

monotonically as η increases, which is a common boundary-layer thermal behaviour. 

A narrower thermal boundary layer results from a faster rate of temperature decay 

caused by an increase in λ. This suggests that heat transfer from the plate to the fluid is 

improved by increased non-Newtonian processes. Thermal diffusion away from the surface is 

intensified by increased convection brought on by greater velocities.. 

6.4 Skin-Friction  

 
Figure 3: Variation of Skin Friction with Powell–Eyring Parameter (λ) 
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Figure 3 shows how the skin friction coefficient "f" ^"''" \"(0)" changes with λ. It is evident that 

skin friction rises monotonically with increasing λ. The nonlinear stress component at the wall 

provides more resistance, which is the cause of this behaviour. 

An essential factor in polymer processing and coating flows, the higher wall shear stress for 

increasing λ values validates that Powell–Eyring fluids have stronger surface interaction than 

Newtonian fluids. 

Conclusion 
For the steady laminar natural convection flow of a Powell–Eyring non-Newtonian fluid via a 

vertical plate, a thorough similarity analysis has been provided. The governing nonlinear partial 

differential equations were effectively reduced to a set of coupled nonlinear ordinary 

differential equations by use of a one-parameter Lie scaling group transformation. 

The Powell-Eyring fluid parameter has a considerable impact on velocity, temperature 

distribution, and skin friction, according to numerical solutions found using a shooting 

approach in conjunction with a fourth-order Runge-Kutta scheme. Increasing the Powell-

Eyring parameter improves heat transfer characteristics by increasing fluid velocity and wall 

shear stress while also decreasing thermal boundary-layer thickness. 

The findings unequivocally show that in complex fluid natural convection processes, non-

Newtonian influences cannot be disregarded. Future analytical, numerical, and experimental 

research on viscoinelastic convection flows can benefit from the current analysis's benchmark 

numerical data and physically consistent patterns. 
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