International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com

STUDY ON SOFTWARE MAINTAINABILITY SIMULATOR

Anju, Research Scholar, Department of Computer Science, Monad University, Hapur, Uttar Pradesh (India)
anjupanwar2793@gmail.com

Abstract
Using this analysis one can generate a new sequence of random but related states which look
similar to the original. This Markov process is stochastic in nature which has the property that
the probability of transition from a given state to any future state depends only on the present
state and not on the manner in which it was reached. The simulator is developed in this chapter
to compute n-step e steady state stationary transition probabilities for various state of the
software under maintenance. The one step transition probabilities for five initial states of
deterioration of the software under maintenance. The transition probabilities are chosen
according to Markovian property i.e. the sum of the probabilities of going from one state to all
other state is one. The operating efficiency of the software is supposed to be 0.95, 0.87, 0.79,
0.75 and 0.70. The steady state transition probabilities for each state denoted by 0,1,2,3 and 4
are shown. This simulator is executed for a maximum value of n=100 or till the system reaches a
steady state while calculating n-step probabilities successively.
Keywords: Software, Simulators, Quality, Maintance

Introduction:

Software is developed, maintained, and used by people in a wide variety of situations. Students
create software in their classes, enthusiasts become members of open-source development
teams, and professionals develop software for diverse business fields from finance to
aerospace. All these individual groups will have to address quality problems that arise in the
software they are working with. This chapter will provide definitions for terminology and
discuss the source of software errors and the choice of different software engineering practices
depending on an organization’s sector of business. Every profession has a body of knowledge
made up of generally accepted principles. In order to obtain more specific knowledge about a
profession, one must either: (a) have completed a recognized curriculum or (b) have experience
in the domain. For most software engineers, software quality knowledge and expertise is
acquired in a hands-on fashion in various organizations. The Guide to the Software
Engineering Body of Knowledge constitutes the first international consensus developed on the
fundamental knowledge required by all software engineers.

According to IEEE Standard Glossary of Software Engineering Terminology,
maintainability is the ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment
[IEE1990]. Maintainability can also be defined as the probability that a specified maintenance
action on a specified item can be successfully performed (putting the item into a specified state)
within a specified time interval by personnel of specified characteristics using specified tools and
procedures [JAR1990].

Software under maintenance consists of finite number of states. The states have a specific
operating efficiency. The maintenance process can bring the software from one state to another
within a specific time slot allotted to the software maintenance engineers. The software fails or
reaches its maximum efficiency depends upon the nature of maintenance problems. Here an
attempt has been made to develop a simulator to compute n-step transition probabilities
successfully for software under maintenance until it reaches steady state. This process is very
much depicted by Markov analysis [GIL2004].

The purpose of software maintenance is to assure the quality of performance of the
respective software. But design errors, undiscovered faults and installing new applications can
cause the software degradation [RIK1999]. There are two aspects of maintainability:
serviceability (the probability of returning the item to normal service) and repair ability (the
probability of repairing the actual or impending fault). Generally, software maintainability is

) 3 I1AJESM

s Volume-18, Issue-I 109


mailto:iajesm2014@gmail.com
mailto:anjupanwar2793@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com
termed as repair ability. In software engineering, the main emphasis of maintenance is change or
the modification of a software product after delivery to correct faults, to improve performance or
other attributes, or to adapt the product to a modified environment.

Rajiv D. et al. [RAJ1994] estimated the impact of development activities in a more
practical time frame. They developed a two-stage model in which software complexity is a key
intermediate variable that links design and development decisions to their downstream effects on
software maintenance. They analyzed the data collected from various software enhancement
projects and software applications in a large IBM COBOL environment. Results indicated that
the use of a code generator in development is associated with increased software complexity and
software enhancement project effort. The use of packaged software is associated with decreased
software complexity and software enhancement effort. Pfleeger [PFL1998] describes
maintainability as the probability that a maintenance activity can be carried out within a stated
time interval, it ranges from 0 to Rikard Land [RIK1999] investigates how the
maintainability of a piece of software changes as time passes and it is being maintained by
performing measurements on industrial systems. Niessink F. [NIE2001] discussed the
perspectives of improving software maintenance and described software maintenance process
improvement from two perspectives: measurement-based improvement and maturity-based
improvement.

Y. Kataoka et al. [YKAZ2002] discussed program refactoring as a technique to enhance
the maintainability of a program. A quantitative method was proposed to measure the
maintainability enhancement effect of program refactoring. Coupling metrics were used to
evaluate the refactoring effect. By comparing the coupling before and after the refactoring, the
degree of maintainability enhancement was evaluated. The results showed that the method was
really effective to quantify the refactoring effect. The software to be maintained may be
considered to be in a number of states of deterioration. The maintenance (repair) work of the
software is inspected after a regular interval of time, say, weekly and is classified as being in one
of the states. Each state is considered as functionally independent. The evaluation is carried out
using Markov analysis which looks at a sequence of states and analyses the tendency of one state
to be followed by another, after each repair the software restored to a state having ‘increased’
operating efficiency. Using this analysis one can generate a new sequence of random but related
states which look similar to the original. This Markov process is stochastic in nature which has
the property that the probability of transition from a given state to any future state depends only
on the present state and not on the manner in which it was reached.

If to<til<ty<..... < tn represents the points in time scale then the family of random
variables {X(tn)} is said to be a Markov process provided it holds the Markovian property :
P{X (tn) = anx (tn-]_) =Xn-1, X (tO) = XO} = P{ X (tn) = an X(tn-l) = Xn-]_}
M X (to), X (t1),e..enX(tn)

Markov process is a sequence of ‘n’ experiments in which each experiments has ‘n’ possible
outcomes Xi, Xo,...... ,xn. Each individual outcome is called a state and probability (that a
particular outcome occurs) depends only on the probability of the outcome of the preceding
experiment. The simplest of the Markov processes is discrete and constant over time. It is used
when the sequence of experiment is completely described in terms of its states (possible
outcomes). There is a finite set of states numbered 0, 1, 2, 3, ....n and this process can be only in
one state at a prescribed time. The system is said to be discrete in time if it is examined at regular
intervals.
The probability of moving from one state to another or remaining in the same state during a
single time period is called transition probability.

P Xn-1, Xn= P{ X(tn): Xn | X(tn—l): Xn—l}
Mathematically, the probability is called the transition probability. This represents the
conditional probability of the system which is now in state x» at time t, provided that it was

) 3 I1AJESM

s Volume-18, Issue-I 110


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com
previously in state xn-1 at time tn.1. This probability is known as transition probability because it
describes the system during the time interval (tn.1, tn). Since each time a new result or outcome
occurs, the process is said to have stepped or incremented one step. Each step represents a time
period or any other condition which would result in another possible outcome. The symbol n is
used to indicate the number of steps or increments.

The transition probability can be arranged in a square matrix form denoted by P with elements pj;
Such that ) pij=1;i=0, 1, 2, 3.....nand 0< p;;<1
J=0
n-step stationary transition probabilities
The n-step stationary transition probabilities are defined to be
Prs™ =P(Xisn=s|Xi=r) = P(Xn=5|Xo=7)
PrsM>0 for all states r and s; n=1, 2,....
n
Y prs™=1 for all states r; n=1, 2,....
s=0
The above equation assumes that there are N+ 1 possible states. Note that if the system is
currently in state r, it must be in some state n steps from now.

Thus n

Z prs(n) =1

s=0
In general, the n-step stationary transition probabilities can be calculated as follows:

n
prs® =3 prj* pjs" Y
j=0

Where the possible states are 1, 2, ...... , 0. That is, the probability of going from state r to state s
in n steps is the probability of going from state r to state j in one step, times the probability of
going from state j to state s in n-1 steps, summed over all j=0, 1, 2,...... , .

Steady state stationary transition probabilities
Suppose a given system has N+ 1 states, 0, 1, 2... N. if for some value of n
prs™ > 0 for r=0,1,2,...... ,N

s=0,1,2,....... ,N
and if
prr > ( for r=0, 1, 2, .....,N
then
limprs™ =as fors=0,1,2,.....,N
n—oo

The quantity as is the steady state stationary transition probability of being in state s after a large
number of steps. That is to say, if every state can eventually be reached from every other state
(possibly in a large number of steps), and if the system can be in any given state on two
consecutive steps, then the probability of being in any given state after a large number of steps is
a constant. This constant is called the steady state probability for the given state.

The N+1 steady state probabilities satisfy the N+2 linear steady state equations

as = Z ar*<Prs for S=0, 1, 2,....., N
r=0
N
z as = 1
s=0
Thus, if one forms a system of N+1 linear equations in N+ 1 unknown using above equation,
the solution of the system will be the N+1 steady state probabilities.

) 3 I1AJESM

s Volume-18, Issue-I 111


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com

PROPOSED MODEL
The proposed model assumes that ‘maintainability’ of the software means a quantitative
characteristic called ‘operating efficiency’ , which from user point of view is maximum in the
beginning and deteriorates progressively with the passage of time in view of ever increasing
user expectations that evolve constantly over time.
Software under consideration for maintenance must be in one and only one state of deterioration
at specific point of time. The software that is currently in state ‘r’ must be in some state ‘n’ steps
from now. Under fairly general conditions, if the one-step stationary transition probabilities are
available, one can determine n-step stationary transition probabilities until the software reaches
steady state.
The simulator developed in this chapter computes the n-step probabilities successively until the
system reaches steady state or until n = 100, which ever occurs first. If steady state is not
reached, a message stating such is printed. The simulator is developed using high level
programming language.
Assumptions
e The software to be maintained may be considered in one of the five states of deterioration.
Say Xi= {0, 1, 2, 3, 4} represents the state of deterioration of the software at the end of i
week.
e The operating efficiency is simulated for each state using Bux Muller transformation. e.g.
95% to 100% for the state=0 and below 70% for state =4 and in-between for other states.
e The one-step stationary transition probabilities may be given or may be determined from the
past data.
e n-step transition probabilities are calculated successively until the system reaches steady-
state or n = 100 which ever occurs first.
e Inthe absence of a steady-state a message stating such is printed.
DESCRIPTION OF ALGORITHM: SIM_SOFT_MAINT
Terms and Notations
N : Number of n-step probabilities.
NS : Number of states of deterioration for the
software to be maintained.
PROB (X0=I) : Probability of being in state I initially (operating

efficiency )
P(l,J) : One step stationary transition probability
PN (1,J) . n steps stationary transition probability

MAT (1, J) : Probabilities of being in state J after | steps.
Algorithm SIM_SOFT_MAINT for n-step probabilities using
Markov Analysis
1. [INPUT]
(a) [Number of states for software maintenance]
Read NS
(b) [Probabilities of being in state | initially]
[Compute the probabilities (operating efficiency) of each state of deterioration initially
operating efficiency using Box-Muller transformation by (with the help of random numbers
generation), computing of their mean and standard deviation and normalizing the function
These probabilities are denoted by PROB(1)), 1=1 to NS] or
For I=1to NS
Read PROB (1)
End For
(c) [One step stationary transition probabilities]

) 3 I1AJESM

s Volume-18, Issue-I 112


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com
For I=1 to NS
ForJ=1to NS
Read P (I, J)
End for
End for
2. [Calculate n step stationary transition
probabilities for N=1,2,3, ..... ]
For R =1 to NS
For S=1to NS
PN[R,S)=0
ForJ=1to NP
PN (R, S)=PN (R,S)+P(R,J)*P (J,S)
End for
End for
End for
3. [Compute steady state transition probability]
For J=11to NS
TEMP(J)=0
For I=1to NS
TEMP (J)=TEMP(J)+PROB(I)*PN (1,J)
End for
End for

4. [Write probabilities of being in state j after i steps
in the form of matrix MAT using TEMP (J)]
5. [write results]
For 1I=1 toNS
ForJ=11to NS
Write MAT(1,J)
End for
End for
6. Stop

RESULTS & DISCUSSION
The simulator is developed in this chapter to compute n-step e steady state stationary transition
probabilities for various state of the software under maintenance. The one step transition
probabilities for five initial states of deterioration of the software under maintenance have been
shown in table 1. The transition probabilities are chosen according to Markovian property i.e.
the sum of the probabilities of going from one state to all other state is one.
The operating efficiency of the software is supposed to be 0.95, 0.87, 0.79, 0.75 and 0.70. The
steady state transition probabilities for each state denoted by 0,1,2,3 and 4 are shown in the table
2 in the form of results.
This simulator is executed for a maximum value of n=100 or till the system reaches a steady
state while calculating n-step probabilities successively.

TABLE 1: Transition Probabilities Matrix

From State 0 1 2 3 4
0 0.55 0.40 0.03 0.02 0
1 0 0.50 0.46 0.03 0.01
2 0 0 0.44 0.50 0.06
3 0 0 0 0.68 0.32
4 0 1.0 0 0 0

) 3 I1AJESM

s Volume-18, Issue-I 113


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com
TABLE 2: Steady State Transition Probabilities
State Steady state stationary transition
probabilities

0
0.3173
0.2308
0.3123
0.1396

AWML |O

CONCLUSION:

A gradual eye on upkeeps of the software would reveal that with the passage of time the ‘operating
efficiency’ decreases and the level of maintainability effort increase. The initial state of software’s
operating efficiency proceeds to a state after passing through ‘n’ steps where the operating efficiency noose
dives to the lowest level referring to as ‘steady state’ after which there will conceptually be no retardation of
software efficiency any further and the concerned software may be branded as ‘unfit for use’ i.e. no further
maintainability is desirable and no effort should be made to modify the software. This is achieved after a
large number of steps and as such the transition probabilities remain fairly constant for each state as shown
in the table 16. This state is the terminal stage where the user has to adapt the strategy of either invests in
new alternate software or goes for an improved version of the same. The software simulation tool designed
here will be helpful for the software project managers in judging the maintenance efforts of the software.
Though it is difficult to quantify the actual maintenance efforts at different point of time of our

choice, but its impact is fairly realized over the software life cycle. A precise measure of

software maintainability can help better manage the maintenance phase effort.

Reference:
Aannestad, B., Hooper, J., “The Future of Groupware in the Interactive Workplace”,
HRMagazine, Vol. 12, Issue 11, November 1997, pp. 37-41.

Abdrabou A, Zhuang W (2006) A position-based QoS routing scheme for UWB mobile ad hoc

networks. IEEE J. Select. Areas Commun. 24:850-856.

Agarwal, H., Demillo, R. A. and Spafford, E.H. Debugging with Dynamic Slicing and
Backtracking, Software Practice and Experience, 23, pp. 589-616, 1993.

Campos, J., Arcuri, A., Fraser, G. and Abreu, R. Continuous Test Generation: Enhancing
Continuous  Integration with Automated Test Generation, In the Proceedings of
Automated Software Engineering (ASE), 2014.

Camuffo, M., Maiocchi, M. & Morselli, M., 1990. Automatic software test generation. Inform.
Softw. Technol., pp. 337-346. Carnes, P., 1997. Software reliability in weapon systems. ,

Proceedings of 8th  International Symposium On Software Reliability Engineering, p. 114—
115.

Canfora, G., Cimitile, A. and De Lucia, A. Conditioned Program Slicing. Information and

Software Technology, 40(11), pp. 595-607, 1998.

Cao, Y., Hu, C. and Li, L. An Approach to Generate Software Test Data for a Specific Path

Automatically with  Genetic Algorithm, In the Proceedings of ICRMS, Chengdu, pp. 888-
892, 2009.

Dufner, D., Kwon, O., Hadidi, R., “WEB-CCAT: A Collaborative Learning Environment For
Geographically Distributed  Information  Technology  Students and  Working
Professionals”, Communications of the Association for Information Systems, Vol. 1,
Article 12, March 1999, Available [Online]: http://cais.isworld.org/articles/1-
12/article.htm [26 November 2000].

Edvardsson, J and Kamkar, M. Analysis of the Constraint Solver in UNA Based Test Data
Generation, In the Proceedings of the 9th European software engineering conference

& R yolume-18, Issue-ll 114


mailto:iajesm2014@gmail.com
http://cais.isworld.org/articles/1-12/article.htm
http://cais.isworld.org/articles/1-12/article.htm

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July-December 2022, Submitted in September 2022, iajesm2014@gmail.com
held jointly with 9th ACM SIGSOFT international symposium on Foundations of software
engineering, 26(5), pp. 237-245, 2003.

Ehrlich, W. K., Lee, K. & Molisani, R. H., 1990. Applying reliability measurement: A case
Study. IEEE Transaction on Software, p. 56-64..

Udell, J., Asthagiri, N., Tuvell, W., Peer-To-Peer. Harnessing the Power of Disruptive
Technologies, O’Reill & Associates, 2001.

UNCTAD,World Economy Report(2012) The Software Industry and Developing Country PP-38-
42 Review of Literature - Il Economic Analysis of Changing Dimensions of IT Sector in India
Page 74.

Upadhya, Carol (2007). ,,Employment, Exclusion & ,Merit” in the Indian IT Industry®,
Economic & Political Weekly, A Sameeksha Trust Publication alsoseehttp://www.epw.org.in
,VoIXLI No.36 September9- 15,2006 PP-1863- 1867.

Vaishnav, Rajiv (2011).” Indian Industry2011: Key Driver of growth®, The Hindu Survey of
Indian Industry, REGD, RN/5734|61 pp.190-192.

Varma, Shweeta (2012). ,,Looking for that Sunshine™, Dataquest, Vol.xxxNo0.16 & 17August31-
Septemberl15, 2012, PP- 104-108.

Vivek V, Sandeep T, Manoj B S, Murthy C S R (2004) A novel out-of-band signaling
mechanism for enhanced real time support in tactical ad hoc wireless networks. Proc.
IEEE RTAS 56-63.

Wallace, D. & Coleman, C., 2001. Application and Improvement of Software Reliability
Models, NASA, Goddard Space Flight Centre(GSFC): Technical Report,Software
Assurance Technology Center.

Wang M, Kuo G S (2005) An application-aware QoS routing scheme with improved stability for
multimedia  applications in mobile ad hoc networks. Proc. IEEE Vehicular Technology Conf.
1901-1905.

Wang, Z. & Wang, J., 2005. Parameter estimation of some NHPP software reliability models
with changepoint. Communications in Statistics: Simulation and Computation, Volume 34,
p. 121-134..

Wang, Z., Wang, J. & Liang, X., 2007. Non-parametric Estimation for NHPP Software
Reliability Models.  Journal of Applied Statistics, pp. 107-119.

Whittaker, J. A., 2000. What is software testing? And why is it so hard?. Software, pp. 70-79.
Wood, A., 1996. Predicting software reliability. IEEE Computer, Volume 11, pp. 69 - 77.
Wilson, J., Hoskin, N., Nosek, J., “The Benefits of Collaboration for Student Programmers”, 24™"
SIGCSE technical symposium on Computer Science Education, February 1993, pp. 160-164.

) 3 I1AJESM

s Volume-18, Issue-I 115


mailto:iajesm2014@gmail.com

